Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998324

ABSTRACT

In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.

2.
Carbohydr Polym ; 288: 119374, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35450636

ABSTRACT

A new precursor (Ag+/CS/PNIPA) arranged as a nanogel (nanoreactor) is obtained from the aqueous mixture of Ag+, chitosan (CS) and poly(N-isopropylacrylamide) (PNIPA). A model synthetic system based on the thermally induced aqueous silver ions-CS reaction to form silver nanoparticles (AgNP) is used as a starting point to assess the PNIPA role as a thermo-sensitive additive of synthesis in a low content for the production of size-controlled AgNP. As expected, the PNIPA phase transition produced by the temperature increase leads to chitosan nanogel contraction, lowering the diffusion of ionic species. PNIPA behaves as a successful additive between 5.6 and 10.5 wt% of content blended with chitosan, noticeably improving AgNP nucleation during thermal treatment at 90 °C. Higher PNIPA contents are less effective in achieving size control and broader size distributions are generated. The PNIPA effect on the nanoreactor structure is characterized by rheology, modelled and analyzed against the AgNP morphology obtained.


Subject(s)
Acrylic Resins/chemistry , Chitosan , Metal Nanoparticles , Chitosan/chemistry , Ions , Metal Nanoparticles/chemistry , Nanotechnology , Silver/chemistry
3.
Soft Matter ; 17(24): 5941-5949, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34046658

ABSTRACT

A chemical actuator was developed taking advantage of the internal microstructure of a plant stem. Stem xylems of Cucurbita moschata were chemically modified with a pH-responsive polymer to obtain an intelligent hydraulic valve. The chemical composition of the device was based mainly on biological scaffolds combined with a minimum content of a tailor-made synthetic copolymer. A pH-sensitive hydrogel composed of a copolymer of acrylic acid was grafted on the inner surface of stem microchannels, assessing the physicochemical properties and the response of the developed actuator under different pressure and pH conditions. Variation of average microcapillary diameter in response to pH stimuli was estimated using Poiseuille's model. This microfluidic device demonstrated the pH-responsive properties and efficient control of flux, showing its open/close transition at pH 3.25 and mechanical stability until pressures of 1.75 meters of water column (mH2O). This actuator has adequate response to open/close cycling and relevance to be evaluated as a pH-response valve of aqueous systems. This kind of actuator is a research topic of high interest with potential application to technology demands.


Subject(s)
Cucurbita , Hydrogels , Hydrogen-Ion Concentration , Microfluidics , Xylem
4.
Macromol Rapid Commun ; 40(18): e1900217, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31535770

ABSTRACT

Supramolecular hydrogels have promising applications in a wide variety of fields including 3D bioprinting, sensors and actuators, biomedicine, and controlled drug delivery. This communication reports the facile reversible thermotriggered formation of novel pH-responsive supramolecular hydrogels based on poly(vinyl alcohol) (PVA) bonded via dynamic H-bridge with small phenolic biomolecules. PVA and phenolic compounds form a clear solution when they are physically mixed in water at high temperature, but a fast gelation is produced at room temperature through multiple strong H-bonding interactions. The structure and type of functional groups of different phenolic molecules allow preparing hydrogels with tailor-made viscoelastic properties, controlled low phase transition temperature, and pH-dependent swelling behavior. This combination makes these supramolecular networks very interesting candidates to be used in 3D bioprinting and topical drug delivery of thermolabile biomolecules.


Subject(s)
Hydrogels/chemistry , Phenols/chemistry , Polyvinyl Alcohol/chemistry , Drug Delivery Systems/methods , Hydrogels/chemical synthesis , Hydrogen Bonding , Phase Transition , Temperature , Viscoelastic Substances/chemistry
5.
Anal Biochem ; 550: 34-40, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29649474

ABSTRACT

This work reports an amperometric enzyme-electrode prepared with glucose oxidase, which have been immobilized by a cross-linking step with glutaraldehyde in a mixture containing albumin and a novel carbon nanotubes-mucin composite (CNT-muc). The obtained hydrogel matrix was trapped between two polycarbonate membranes and then fixed at the surface of a Pt working electrode. The developed biosensor was optimized by evaluating different compositions and the analytical properties of an enzymatic matrix with CNT-muc. Then, the performance of the resulting enzymatic matrix was evaluated for direct glucose quantification in human blood plasma. The novel CNT-muc composite provided a sensitivity of 0.44 ±â€¯0.01 mA M-1 and a response time of 28 ±â€¯2 s. These values were respectively 20% higher and 40% shorter than those obtained with a sandwich-type biosensor prepared without CNT. Additionally, CNT-muc based biosensor exhibited more than 3 orders of magnitude of linear dynamic calibration range and a detection limit of 3 µM. The short-term and long-term stabilities of the biosensors were also examined and excellent results were obtained through successive experiments performed within the first 60 days from their preparation. Finally, the storage stability was remarkable during the first 300 days.


Subject(s)
Biosensing Techniques/methods , Blood Glucose/metabolism , Mucins/chemistry , Nanotubes, Carbon/chemistry , Humans
6.
Appl Radiat Isot ; 100: 101-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25773266

ABSTRACT

Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution in diagnostic and therapeutic medical applications. But, even in systems where the 3D structure is usually maintained for long periods of time after irradiation, it is still not possible to eliminate the diffusion of the different species in the regions of dose gradients within the gel. As a consequence, information of the dose loses quality over time. In the pursuit of a solution and to improve the understanding of this phenomenon a novel system based on itaconic acid and N-N'-methylene-bisacrylamide (BIS) is hereby proposed. Effects of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species was studied. In this study, one of the carboxylic groups of the itaconic acid molecule was modified with aniline to obtain molecules with similar reactivity but different molecular sizes. Then, dosimeters based on these modified species and on the original ITA molecules were irradiated in an X-ray tomography apparatus at different doses up to 173Gy. Afterwards, the resulting dosimeters were characterized by Raman spectroscopy and optical absorbance in order to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the post irradiation diffusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...