Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37504737

ABSTRACT

Ustilago maydis is an important model to study intermediary and mitochondrial metabolism, among other processes. U. maydis can grow, at very different rates, on glucose, lactate, glycerol, and ethanol as carbon sources. Under nitrogen starvation and glucose as the only carbon source, this fungus synthesizes and accumulates neutral lipids in the form of lipid droplets (LD). In this work, we studied the accumulation of triacylglycerols in cells cultured in a medium containing acetate, a direct precursor of the acetyl-CoA required for the synthesis of fatty acids. The metabolic adaptation of cells to acetate was studied by measuring the activities of key enzymes involved in glycolysis, gluconeogenesis, and the pentose phosphate pathways. Since growth on acetate induces oxidative stress, the activities of some antioxidant enzymes were also assayed. The results show that cells grown in acetate plus nitrate did not increase the amount of LD, but increased the activities of glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, suggesting a higher production of reactive oxygen species in cells growing in acetate. The phosphofructokinase-1 (PFK1) was the enzyme with the lowest specific activity in the glycolytic pathway, suggesting that PFK1 controls the flux of glycolysis. As expected, the activity of the phosphoenolpyruvate carboxykinase, a gluconeogenic enzyme, was present only in the acetate condition. In summary, in the presence of acetate as the only carbon source, U. maydis synthesized fatty acids, which were directed into the production of phospholipids and neutral lipids for biomass generation, but without any excessive accumulation of LD.

2.
J Fungi (Basel) ; 8(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36422042

ABSTRACT

It has been shown that the alternative oxidase in mitochondria of fungi and plants has important functions in the response against stress conditions, although their role in some organisms is still unknown. This is the case of Ustilago maydis. There is no evidence of the participation of the U. maydis Aox1 in stressful conditions such as desiccation, high or low temperature, and low pH, among others. Therefore, in this work, we studied the role of the U. maydis Aox1 in cells exposed to oxidative stress induced by methyl viologen (paraquat). To gain insights into the role of this enzyme, we took advantage of four strains: the FB2 wild-type, a strain without the alternative oxidase (FB2aox1Δ), other with the Aox1 fused to the Gfp under the control of the original promoter (FB2aox1-Gfp), and one expressing constitutively de Aox1-Gfp (FB2Potef:aox1-Gfp). Cells were incubated for various times in the presence of 1 mM paraquat and growth, replicative capacities, mitochondrial respiratory activity, Aox1 capacity, and the activities of several antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase) were assayed. The results show that (1) the response of U. maydis against oxidative stress was the same in the presence or absence of the Aox1; (2) the activities of the antioxidant enzymes remained constant despite the oxidative stress; and (3) there was a decrease in the GSH/GSSG ratio in U. maydis cells incubated with paraquat.

3.
Microorganisms ; 10(4)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35456844

ABSTRACT

Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.

4.
Bio Protoc ; 12(1): e4277, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35118170

ABSTRACT

Ustilago maydis, a basidiomycete that infects Zea mays, is one of the top ten fungal models for studying DNA repair, signal transduction pathways, and dimorphic transitions, among other processes. From a metabolic point of view, U. maydis lacks fermentative capacity, pointing to mitochondria as a key player in central metabolism. Oxidative phosphorylation, synthesis of heme groups, Krebs cycle, ß-oxidation of fatty acids, and synthesis of amino acids are some of the processes that take place in mitochondria. Given the importance of this organelle in eukaryotic cells in general, and in fungal cells in particular, we present a protocol for the isolation of U. maydis mitochondria based on the enzymatic disruption of U. maydis cell wall and differential centrifugation. The method can easily be extrapolated to other fungal species, by using appropriate lytic enzymes.

5.
J Fungi (Basel) ; 7(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440829

ABSTRACT

Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the ATP synthase, U. maydis mitochondria contain three type II NADH dehydrogenases (NADH for reduced nicotinamide adenine dinucleotide) and the alternative oxidase. Changes in the composition of the respiratory supercomplexes due to energy requirements have been reported in certain organisms. In this study, we addressed the organization of the mitochondrial respiratory complexes in U. maydis under diverse energy conditions. Supercomplexes were obtained by solubilization of U. maydis mitochondria with digitonin and separated by blue native polyacrylamide gel electrophoresis (BN-PAGE). The molecular mass of supercomplexes and their probable stoichiometries were 1200 kDa (I1:IV1), 1400 kDa (I1:III2), 1600 kDa (I1:III2:IV1), and 1800 kDa (I1:III2:IV2). Concerning the ATP synthase, approximately half of the protein is present as a dimer and half as a monomer. The distribution of respiratory supercomplexes was the same in all growth conditions. We did not find evidence for the association of complex II and the alternative NADH dehydrogenases with other respiratory complexes.

6.
Curr Microbiol ; 77(12): 4000-4015, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33064189

ABSTRACT

The function of catalases A and T from the budding yeast Saccharomyces cerevisiae (ScCta1 and ScCtt1) is to decompose hydrogen peroxide (H2O2) to mitigate oxidative stress. Catalase orthologs are widely found in yeast, suggesting that scavenging H2O2 is crucial to avoid the oxidative damage caused by reactive oxygen species (ROS). However, the function of catalase orthologs has not yet been experimentally characterized in vivo. Here, we heterologously expressed Debaryomyces hansenii DhCTA1 and DhCTT1 genes, encoding ScCta1 and ScCtt1 orthologs, respectively, in a S. cerevisiae acatalasemic strain (cta1Δ ctt1Δ). We performed a physiological analysis evaluating growth, catalase activity, and H2O2 tolerance of the strains grown with glucose or ethanol as carbon source, as well as under NaCl stress. We found that both genes complement the catalase function in S. cerevisiae. Particularly, the strain harboring DhCTT1 showed improved growth when ethanol was used as carbon source both in the absence or presence of salt stress. This phenotype is attributed to the high catalase activity of DhCtt1 detected at the exponential growth phase, which prevents intracellular ROS accumulation and confers oxidative stress resistance.


Subject(s)
Debaryomyces , Saccharomycetales , Catalase/genetics , Catalase/metabolism , Hydrogen Peroxide/toxicity , Oxidative Stress , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism
7.
Rev. Fac. Med. UNAM ; 63(5): 7-17, sep.-oct. 2020. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1155419

ABSTRACT

Resumen El lactato se considera un metabolito de desecho que se produce durante la fatiga muscular. En contraste con esta visión simplista, en este trabajo se proporcionan evidencias de las múltiples y complejas funciones de este metabolito. Se muestra que: 1) el lactato es el producto final de la glucólisis, independientemente de la concentración de oxígeno en el medio en el que se encuentren las células; 2) el lactato forma parte de 2 tipos de lanzadera, una que funciona en el espacio intermembranal de la mitocondria, y otra intercelular, que se encarga de alimentar con lactato a ciertos tipos celulares, como las neuronas o el músculo cardiaco; 3) en los espermatozoides, el lactato se transporta directamente a la matriz mitocondrial y allí se oxida para producir piruvato y NADH; 4) en el hígado, el lactato participa en la oxidación del etanol a través de la generación de peróxido de hidrógeno; 5) que dependiendo de la estirpe celular, el lactato puede funcionar como agente antiinflamatorio (endocrino) o regulador de la expresión génica.


Abstract Lactate is considered to be a waste metabolite produced during muscle fatigue. In contrast with this simplistic point of view, in this review we provide evidence of the multiple and complex functions of this metabolite. We show that: 1) lactate is the final product of the glycolysis regardless the oxygen concentration in the cell 2) lactate is part of two types of shuttle, one that functions in the intermembrane space of the mitochondrion, and another intercellular, which is responsible for feeding lactate to certain cell types, such as neurons or heart muscle, 3) in sperm, lactate is transported directly to the mitochondrial matrix and there it is oxidized to produce pyruvate and NADH, 4) in the liver, lactate participates in the oxidation of ethanol through the generation of hydrogen peroxide, 5) Depending on the cell line, lactate can function as anti-inflammatory agent (endocrine) and/or a regulator of gene expression.

8.
Arch Biochem Biophys ; 694: 108603, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32986977

ABSTRACT

The alternative oxidase (AOX) catalyzes the transfer of electrons from ubiquinol to oxygen without the translocation of protons across the inner mitochondrial membrane. This enzyme has been proposed to participate in the regulation of cell growth, sporulation, yeast-mycelium transition, resistance to reactive oxygen species, infection, and production of secondary metabolites. Two approaches have been used to evaluate AOX function: incubation of cells for long periods of time with AOX inhibitors or deletion of AOX gene. However, AOX inhibitors might have different targets. To test non-specific effects of n-octyl gallate (nOg) and salicylhydroxamic acid (SHAM) on fungal physiology we measured the growth and respiratory capacity of two fungal strains lacking (Ustilago maydis-Δaox and Saccharomyces cerevisiae) and three species containing the AOX gene (U. maydis WT, Debaryomyces hansenii, and Aspergillus nidulans). For U. maydis, a strong inhibition of growth and respiratory capacity by SHAM was observed, regardless of the presence of AOX. Similarly, A. nidulans mycelial growth was inhibited by low concentrations of nOg independently of AOX expression. In contrast, these inhibitors had no effect or had a minor effect on S. cerevisiae and D. hansenii growth. These results show that nOg and SHAM have AOX independent effects which vary in different microorganisms, indicating that studies based on long-term incubation of cells with these inhibitors should be considered as inconclusive.


Subject(s)
Enzyme Inhibitors/pharmacology , Fungal Proteins/antagonists & inhibitors , Fungi/drug effects , Gallic Acid/analogs & derivatives , Oxidoreductases/antagonists & inhibitors , Salicylamides/pharmacology , Cell Growth Processes/drug effects , Fungi/growth & development , Fungi/metabolism , Gallic Acid/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Oxygen/metabolism
9.
Arch Microbiol ; 202(5): 1211-1221, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32088730

ABSTRACT

The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.


Subject(s)
Lipid Metabolism/drug effects , Sirolimus/pharmacology , Ustilago/drug effects , Antifungal Agents/pharmacology , Lipids/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Triglycerides/administration & dosage , Ustilago/chemistry , Vacuoles/chemistry
10.
PLoS One ; 14(8): e0220853, 2019.
Article in English | MEDLINE | ID: mdl-31408482

ABSTRACT

During the lactation period, rat pups are fed by the dam, and the patterns of mother-pup interaction change during this period. Additionally, there are changes in feeding; first, mother´s milk is the only food needed for sustenance, and later, it is combined with solid food and water. GH serum concentrations depend on both maternal-pup interaction and energy metabolism. In the artificial rearing (AR) procedure, pups are deprived of mother-pup interaction, and the feeding pattern is controlled. This rearing paradigm has been used in rats to analyze the effects of maternal deprivation on social behavior. In the present study, we analyzed the variation in GH, acylated ghrelin and IGF-1 serum concentrations throughout the lactation period in AR pups. At pnd7, the maternal rearing (MR) pups responded to a 4 h fast with a drop in GH serum concentration, which is a well-known response to maternal deprivation. GH serum levels in the AR pups did not change, suggesting an adaptation phenomenon. A dopamine inhibitory effect of GH secretion was observed in pnd7 cultured somatotropes, suggesting dopamine regulation of GH secretion at this age. Acylated ghrelin serum levels in the AR pups showed an inverted pattern compared to that in the MR pups, which was related to the artificial feeding pattern. IGF-1 serum levels were lower in the AR pups than in MR pups, which was associated with hepatic GH resistance and with low Igf1 mRNA expression at pnd7. Interestingly, at pnd14, both pup groups showed high hepatic Igf1 mRNA expression but low IGF-1 serum levels, and this was inverted at pnd21. However, serum glucose levels were lower in the AR pups at pnd14 but reached the same levels as the MR pups at pnd21. Moreover, hepatomegaly and higher hepatic GH-receptor levels were observed in the AR pups at pnd21, which was in agreement with an absence of a solid food meal. During AR, the pups lost the maternal interaction-stimulated GH secretion, which correlated with lower IGF-1 serum levels during the first week of postnatal development. Later, the AR pups exhibited hepatic responses, in order to satisfy the metabolic demand for the normal weaning, with low carbohydrates levels in their meal.


Subject(s)
Animals, Newborn/blood , Growth Hormone/blood , Lactation/physiology , Animals , Animals, Newborn/growth & development , Animals, Newborn/physiology , Blood Glucose/analysis , Female , Ghrelin/blood , Insulin-Like Growth Factor I/analysis , Liver/chemistry , Male , Maternal Deprivation , Pituitary Gland/cytology , Pituitary Gland/metabolism , Rats , Rats, Wistar/blood , Rats, Wistar/growth & development , Rats, Wistar/physiology , Real-Time Polymerase Chain Reaction , Tibia/growth & development
11.
FEBS Open Bio ; 8(8): 1267-1279, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30221129

ABSTRACT

Type 2 alternative NADH dehydrogenases (NDH-2) participate indirectly in the generation of the electrochemical proton gradient by transferring electrons from NADH and NADPH into the ubiquinone pool. Due to their structural simplicity, alternative NADH dehydrogenases have been proposed as useful tools for gene therapy of cells with defects in the respiratory complex I. In this work, we report the presence of three open reading frames, which correspond to NDH-2 genes in the genome of Ustilago maydis. These three genes were constitutively transcribed in cells cultured in YPD and minimal medium with glucose, ethanol, or lactate as carbon sources. Proteomic analysis showed that only two of the three NDH-2 were associated with isolated mitochondria in all culture media. Oxygen consumption by permeabilized cells using NADH or NADPH was different for each condition, opening the possibility of posttranslational regulation. We confirmed the presence of both external and internal NADH dehydrogenases, as well as an external NADPH dehydrogenase insensitive to calcium. Higher oxygen consumption rates were observed during the exponential growth phase, suggesting that the activity of NADH and NADPH dehydrogenases is coupled to the dynamics of cell growth.

12.
J Vis Exp ; (134)2018 04 03.
Article in English | MEDLINE | ID: mdl-29683447

ABSTRACT

The article shows how to implement the LD index assay, which is a sensitive microplate assay to determine the accumulation of triacylglycerols (TAGs) in lipid droplets (LDs). LD index is obtained without lipid extraction. It allows measuring the LDs content in high-throughput experiments under different conditions such as growth in rich or nitrogen depleted media. Albeit the method was described for the first time to study the lipid droplet metabolism in Saccharomyces cerevisiae, it was successfully applied to the basidiomycete Ustilago maydis. Interestingly, and because LDs are organelles phylogenetically conserved in eukaryotic cells, the method can be applied to a large variety of cells, from yeast to mammalian cells. The LD index is based on the liquid fluorescence recovery assay (LFR) of the BODIPY 493/503 under quenching conditions, by the addition of cells fixed with formaldehyde. Potassium iodine is used as a fluorescence quencher. The ratio between the fluorescence and the optical density slopes is named LD index. Slopes are calculated from the straight lines obtained when BODIPY fluorescence and optical density at 600 nm (OD600) are plotted against sample addition. Optimal data quality is reflected by correlation coefficients equal or above 0.9 (r ≥ 0.9). Multiple samples can be read simultaneously as it can be implemented in a microplate. Since BODIPY 493/503 is a lipophilic fluorescent dye that partitions into the lipid droplets, it can be used in many types of cells that accumulate LDs.


Subject(s)
Lipid Metabolism/physiology , Lipids/analysis , Ustilago/metabolism , Boron Compounds , Fluorescence , Lipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...