Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8379, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104123

ABSTRACT

Energetic local frustration offers a biophysical perspective to interpret the effects of sequence variability on protein families. Here we present a methodology to analyze local frustration patterns within protein families and superfamilies that allows us to uncover constraints related to stability and function, and identify differential frustration patterns in families with a common ancestry. We analyze these signals in very well studied protein families such as PDZ, SH3, ɑ and ß globins and RAS families. Recent advances in protein structure prediction make it possible to analyze a vast majority of the protein space. An automatic and unsupervised proteome-wide analysis on the SARS-CoV-2 virus demonstrates the potential of our approach to enhance our understanding of the natural phenotypic diversity of protein families beyond single protein instances. We apply our method to modify biophysical properties of natural proteins based on their family properties, as well as perform unsupervised analysis of large datasets to shed light on the physicochemical signatures of poorly characterized proteins such as the ones belonging to emergent pathogens.


Subject(s)
Proteins , Proteins/metabolism
2.
Nat Struct Mol Biol ; 30(7): 958-969, 2023 07.
Article in English | MEDLINE | ID: mdl-37322239

ABSTRACT

Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.


Subject(s)
Carrier Proteins , Endosomes , Endosomes/metabolism , Protein Transport , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Cell Membrane/metabolism
3.
Viruses ; 14(9)2022 09 09.
Article in English | MEDLINE | ID: mdl-36146808

ABSTRACT

A wide range of animal species are susceptible to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Natural and/or experimental infections have been reported in pet, zoo, farmed and wild animals. Interestingly, some SARS-CoV-2 variants, such as B.1.1.7/Alpha, B.1.351/Beta, and B.1.1.529/Omicron, were demonstrated to infect some animal species not susceptible to classical viral variants. The present study aimed to elucidate if goats (Capra aegagrus hircus) are susceptible to the B.1.351/Beta variant. First, an in silico approach was used to predict the affinity between the receptor-binding domain of the spike protein of SARS-CoV-2 B.1.351/Beta variant and angiotensin-converting enzyme 2 from goats. Moreover, we performed an experimental inoculation with this variant in domestic goat and showed evidence of infection. SARS-CoV-2 was detected in nasal swabs and tissues by RT-qPCR and/or immunohistochemistry, and seroneutralisation was confirmed via ELISA and live virus neutralisation assays. However, the viral amount and tissue distribution suggest a low susceptibility of goats to the B.1.351/Beta variant. Therefore, although monitoring livestock is advisable, it is unlikely that goats play a role as SARS-CoV-2 reservoir species, and they are not useful surrogates to study SARS-CoV-2 infection in farmed animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/veterinary , Goats , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Front Microbiol ; 13: 840757, 2022.
Article in English | MEDLINE | ID: mdl-35602059

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) may display enhanced transmissibility, more severity and/or immune evasion; however, the pathogenesis of these new VOCs in experimental SARS-CoV-2 models or the potential infection of other animal species is not completely understood. Here we infected K18-hACE2 transgenic mice with B.1, B.1.351/Beta, B.1.617.2/Delta and BA.1.1/Omicron isolates and demonstrated heterogeneous infectivity and pathogenesis. B.1.351/Beta variant was the most pathogenic, while BA.1.1/Omicron led to lower viral RNA in the absence of major visible clinical signs. In parallel, we infected wildtype (WT) mice and confirmed that, contrary to B.1 and B.1.617.2/Delta, B.1.351/Beta and BA.1.1/Omicron can infect them. Infection in WT mice coursed without major clinical signs and viral RNA was transient and undetectable in the lungs by day 7 post-infection. In silico modeling supported these findings by predicting B.1.351/Beta receptor binding domain (RBD) mutations result in an increased affinity for both human and murine ACE2 receptors, while BA.1/Omicron RBD mutations only show increased affinity for murine ACE2.

5.
Proteins ; 88(8): 999-1008, 2020 08.
Article in English | MEDLINE | ID: mdl-31746039

ABSTRACT

The seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and protein-oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12-CAPRI37 and CASP13-CAPRI46 joint rounds, which were described and evaluated elsewhere. Focusing on the purely CAPRI targets of this edition (rounds 38-45), we have participated in all 17 assessed targets (considering heteromeric and homomeric interfaces in T125 as two separate targets) both as predictors and as scorers, by using integrative modeling based on our docking and scoring approaches: pyDock, IRaPPA, and LightDock. In the protein-protein and protein-peptide targets, we have also participated with our webserver (pyDockWeb). On these 17 CAPRI targets, we submitted acceptable models (or better) within our top 10 models for 10 targets as predictors, 13 targets as scorers, and 4 targets as servers. In summary, our participation in this CAPRI edition confirmed the capabilities of pyDock for the scoring of docking models, increasingly used within the context of integrative modeling of protein interactions and multimeric assemblies.


Subject(s)
Molecular Docking Simulation , Oligosaccharides/chemistry , Peptides/chemistry , Proteins/chemistry , Software , Amino Acid Sequence , Binding Sites , Humans , Ligands , Oligosaccharides/metabolism , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Proteins/metabolism , Research Design , Structural Homology, Protein
6.
Bioinformatics ; 36(7): 2284-2285, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31808797

ABSTRACT

MOTIVATION: Protein-protein interactions are key to understand biological processes at the molecular level. As a complement to experimental characterization of protein interactions, computational docking methods have become useful tools for the structural and energetics modeling of protein-protein complexes. A key aspect of such algorithms is the use of scoring functions to evaluate the generated docking poses and try to identify the best models. When the scoring functions are based on energetic considerations, they can help not only to provide a reliable structural model for the complex, but also to describe energetic aspects of the interaction. This is the case of the scoring function used in pyDock, a combination of electrostatics, desolvation and van der Waals energy terms. Its correlation with experimental binding affinity values of protein-protein complexes was explored in the past, but the per-residue decomposition of the docking energy was never systematically analyzed. RESULTS: Here, we present pyDockEneRes (pyDock Energy per-Residue), a web server that provides pyDock docking energy partitioned at the residue level, giving a much more detailed description of the docking energy landscape. Additionally, pyDockEneRes computes the contribution to the docking energy of the side-chain atoms. This fast approach can be applied to characterize a complex structure in order to identify energetically relevant residues (hot-spots) and estimate binding affinity changes upon mutation to alanine. AVAILABILITY AND IMPLEMENTATION: The server does not require registration by the user and is freely accessible for academics at https://life.bsc.es/pid/pydockeneres. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins , Software , Algorithms , Molecular Docking Simulation , Protein Binding , Static Electricity
7.
Proteins ; 87(12): 1200-1221, 2019 12.
Article in English | MEDLINE | ID: mdl-31612567

ABSTRACT

We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.


Subject(s)
Computational Biology , Protein Conformation , Proteins/ultrastructure , Software , Algorithms , Binding Sites/genetics , Databases, Protein , Models, Molecular , Protein Binding/genetics , Protein Interaction Mapping , Proteins/chemistry , Proteins/genetics , Structural Homology, Protein
8.
Bioinformatics ; 34(1): 49-55, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28968719

ABSTRACT

Motivation: Computational prediction of protein-protein complex structure by docking can provide structural and mechanistic insights for protein interactions of biomedical interest. However, current methods struggle with difficult cases, such as those involving flexible proteins, low-affinity complexes or transient interactions. A major challenge is how to efficiently sample the structural and energetic landscape of the association at different resolution levels, given that each scoring function is often highly coupled to a specific type of search method. Thus, new methodologies capable of accommodating multi-scale conformational flexibility and scoring are strongly needed. Results: We describe here a new multi-scale protein-protein docking methodology, LightDock, capable of accommodating conformational flexibility and a variety of scoring functions at different resolution levels. Implicit use of normal modes during the search and atomic/coarse-grained combined scoring functions yielded improved predictive results with respect to state-of-the-art rigid-body docking, especially in flexible cases. Availability and implementation: The source code of the software and installation instructions are available for download at https://life.bsc.es/pid/lightdock/. Contact: juanf@bsc.es. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Molecular Docking Simulation , Proteins/metabolism , Software , Ligands , Protein Binding , Protein Conformation , Proteins/chemistry , Tryptophan Synthase/chemistry , Tryptophan Synthase/metabolism
9.
Methods Mol Biol ; 1529: 139-159, 2017.
Article in English | MEDLINE | ID: mdl-27914049

ABSTRACT

An important aspect of protein functionality is the formation of specific complexes with other proteins, which are involved in the majority of biological processes. The functional characterization of such interactions at molecular level is necessary, not only to understand biological and pathological phenomena but also to design improved, or even new interfaces, or to develop new therapeutic approaches. X-ray crystallography and NMR spectroscopy have increased the number of 3D protein complex structures deposited in the Protein Data Bank (PDB). However, one of the more challenging objectives in biological research is to functionally characterize protein interactions and thus identify residues that significantly contribute to the binding. Considering that the experimental characterization of protein interfaces remains expensive, time-consuming, and labor-intensive, computational approaches represent a significant breakthrough in proteomics, assisting or even replacing experimental efforts. Thanks to the technological advances in computing and data processing, these techniques now cover a vast range of protocols, from the estimation of the evolutionary conservation of amino acid positions in a protein, to the energetic contribution of each residue to the binding affinity. In this chapter, we review several existing computational protocols to model the phylogenetic, structural, and energetic properties of residues within protein-protein interfaces.


Subject(s)
Computational Biology/methods , Models, Molecular , Protein Engineering , Proteins , Amino Acids/chemistry , Binding Sites , Computer Simulation , Databases, Protein , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , Protein Engineering/methods , Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Software , Web Browser
10.
Methods ; 118-119: 163-170, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27816523

ABSTRACT

Deciphering the structural and energetic determinants of protein-RNA interactions harbors the potential to understand key cell processes at molecular level, such as gene expression and regulation. With this purpose, computational methods like docking aim to complement current biophysical and structural biology efforts. However, the few reported docking algorithms for protein-RNA interactions show limited predictive success rates, mainly due to incomplete sampling of the conformational space of both the protein and the RNA molecules, as well as to the difficulties of the scoring function in identifying the correct docking models. Here, we have tested the predictive value of a variety of knowledge-based and energetic scoring functions on a recently published protein-RNA docking benchmark and developed a scoring function able to efficiently discriminate docking decoys. We first performed docking calculations with the bound conformation, which allowed us to analyze the problem in optimal conditions. We found that geometry-based terms and electrostatics were the most important scoring terms, while binding propensities and desolvation were much less relevant for the scoring of protein-RNA models. This is in contrast with what we observed for protein-protein docking. The results also showed an interesting dependence of the predictive rates on the flexibility of the protein molecule, which arises from the observed higher positive charge of flexible interfaces and provides hints for future development of more efficient protein-RNA docking methods.


Subject(s)
Algorithms , Computational Biology/statistics & numerical data , Models, Statistical , Molecular Docking Simulation/statistics & numerical data , RNA-Binding Proteins/chemistry , RNA/chemistry , Benchmarking , Binding Sites , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Research Design , Static Electricity , Thermodynamics
11.
Proteins ; 81(12): 2192-200, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23934865

ABSTRACT

In addition to protein-protein docking, this CAPRI edition included new challenges, like protein-water and protein-sugar interactions, or the prediction of binding affinities and ΔΔG changes upon mutation. Regarding the standard protein-protein docking cases, our approach, mostly based on the pyDock scheme, submitted correct models as predictors and as scorers for 67% and 57% of the evaluated targets, respectively. In this edition, available information on known interface residues hardly made any difference for our predictions. In one of the targets, the inclusion of available experimental small-angle X-ray scattering (SAXS) data using our pyDockSAXS approach slightly improved the predictions. In addition to the standard protein-protein docking assessment, new challenges were proposed. One of the new problems was predicting the position of the interface water molecules, for which we submitted models with 20% and 43% of the water-mediated native contacts predicted as predictors and scorers, respectively. Another new problem was the prediction of protein-carbohydrate binding, where our submitted model was very close to being acceptable. A set of targets were related to the prediction of binding affinities, in which our pyDock scheme was able to discriminate between natural and designed complexes with area under the curve = 83%. It was also proposed to estimate the effect of point mutations on binding affinity. Our approach, based on machine learning methods, showed high rates of correctly classified mutations for all cases. The overall results were highly rewarding, and show that the field is ready to move forward and face new interesting challenges in interactomics.


Subject(s)
Carbohydrates/chemistry , Molecular Docking Simulation , Proteins/chemistry , Water/chemistry , Computational Biology , Mutation , Protein Binding , Protein Conformation , Scattering, Small Angle , Software , X-Ray Diffraction
12.
Proteins ; 81(11): 1980-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23843247

ABSTRACT

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies.


Subject(s)
Databases, Protein , Protein Interaction Mapping , Algorithms , Mutation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...