Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 711, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436918

ABSTRACT

We present a 3-dimensional fully natural sonic crystal composed of spherical aggregates of fibers (called Aegagropilae) resulting from the decomposition of Posidonia Oceanica. The fiber network is first acoustically characterized, providing insights on this natural fiber entanglement due to turbulent flow. The Aegagropilae are then arranged on a principal cubic lattice. The band diagram and topology of this structure are analyzed, notably via Argand representation of its scattering elements. This fully natural sonic crystal exhibits excellent sound absorbing properties and thus represents a sustainable alternative that could outperform conventional acoustic materials.

2.
Sci Rep ; 9(1): 8496, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186502

ABSTRACT

Used as building biomaterials for centuries, cereal straws are known for their remarkable acoustic performances in sound absorption. Yet, their use as fibrous media disregards their internal structure made of nodes partitioning stems. Here, we show that such nodes can impart negative acoustic bulk modulus to straw balls when straws are cut on either side of a node. Such metafluid inspired by cereal straws combines visco-thermal diffusion with strong wave dispersion arising from quarter-wavelength resonances within straws. Large spectral bandgaps and slow sound regimes are theoretically predicted and experimental data from impedance tube measurements on an idealised 3D-printed sample layer are in good agreement with the theoretical model. Perfect absorption is achieved at wavelengths 13 times larger than the thickness of the metafluid layer, and slow sound entails an increased density of states causing a cascade of high absorption peaks. Such features could lead cereal straws to serve as cheap acoustic bio-metamaterials.


Subject(s)
Edible Grain/anatomy & histology , Printing, Three-Dimensional , Sound , Triticum/anatomy & histology
3.
Phys Rev E ; 94(5-1): 053004, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967159

ABSTRACT

The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

4.
J Acoust Soc Am ; 139(6): 3395, 2016 06.
Article in English | MEDLINE | ID: mdl-27369166

ABSTRACT

The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.

5.
Sci Rep ; 6: 19519, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26781863

ABSTRACT

Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

6.
Sci Rep ; 4: 4674, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24728322

ABSTRACT

We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.

7.
Article in English | MEDLINE | ID: mdl-24229296

ABSTRACT

The propagation of nonlinear compressional waves in a one-dimensional granular chain driven at one end by a harmonic excitation is studied. The chain is described by a Fermi-Pasta-Ulam (FPU) lattice model with quadratic nonlinearity (α-FPU model), valid for strong initial compression of the chain by an external static force. A successive approximations method is used to obtain the analytical expressions for the amplitudes of the static displacement field and of the fundamental and second harmonics propagating through the lattice. Both propagating and evanescent second harmonics are shown to influence the nonlinear propagation characteristics of the fundamental frequency. The propagating regime is characterized by a periodic energy transfer between first and second harmonics, resulting from dispersion, which disappears when the second harmonic becomes evanescent.

8.
J Acoust Soc Am ; 125(6): 3774-83, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19507959

ABSTRACT

An exhaustive study has been made into the potential improvement in attenuation and focusing of phononic crystal arrays resulting from the deliberate creation of vacancies. Use is made of a stochastic search algorithm based on evolutionary algorithms called the epsilon variable multi-objective genetic algorithm which, in conjunction with the application of multiple scattering theory, enables the design of devices for effectively controlling sound waves. Several parameters are analyzed, including the symmetries used in the distribution of holes and the optimum number of holes. The validity and utility of the general rules obtained have been confirmed experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...