Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38392995

ABSTRACT

Solid tumors frequently present a heterogeneous tumor microenvironment. Because tumors have the potential to proliferate quickly, the consequence is a reduction in the nutrients, a reduction in the pH (<6.8), and a hypoxic environment. Although it is often assumed that tumor clones show a similar growth rate with little variations in nutrient consumption, the present study shows how growth-specific rate (µ), the specific rates of glucose, lactate, and glutamine consumption (qS), and the specific rates of lactate and glutamate production (qP) of 2D-cultured lung tumor cells are affected by changes in their environment. We determined in lung tumor cells (A427, A549, Calu-1, and SKMES-1) the above mentioned kinetic parameters during the exponential phase under different culture conditions, varying the predominant carbon source, pH, and oxygen tension. MCF-7 cells, a breast tumor cell line that can consume lactate, and non-transformed fibroblast cells (MRC-5) were included as controls. We also analyzed how cell-cycle progression and the amino acid transporter CD98 expression were affected. Our results show that: (1) In glucose presence, µ increased, but qS Glucose and qP Lactate decreased when tumor cells were cultured under acidosis as opposed to neutral conditions; (2) most lung cancer cell lines consumed lactate under normoxia or hypoxia; (3) although qS Glutamine diminished under hypoxia or acidosis, it slightly increased in lactate presence, a finding that was associated with CD98 upregulation; and (4) under acidosis, G0/G1 arrest was induced in A427 cancer cells, although this phenomenon was significantly increased when glucose was changed by lactate as the predominant carbon-source. Hence, our results provide an understanding of metabolic responses that tumor cells develop to survive under stressful conditions, providing clues for developing promising opportunities to improve traditional cancer therapies.

2.
Front Genet ; 13: 960263, 2022.
Article in English | MEDLINE | ID: mdl-36263432

ABSTRACT

The acetylation status of histones located in both oncogenes and tumor suppressor genes modulate cancer hallmarks. In lung cancer, changes in the acetylation status are associated with increased cell proliferation, tumor growth, migration, invasion, and metastasis. Histone deacetylases (HDACs) are a group of enzymes that take part in the elimination of acetyl groups from histones. Thus, HDACs regulate the acetylation status of histones. Although several therapies are available to treat lung cancer, many of these fail because of the development of tumor resistance. One mechanism of tumor resistance is the aberrant expression of HDACs. Specific anti-cancer therapies modulate HDACs expression, resulting in chromatin remodeling and epigenetic modification of the expression of a variety of genes. Thus, HDACs are promising therapeutic targets to improve the response to anti-cancer treatments. Besides, natural compounds such as phytochemicals have potent antioxidant and chemopreventive activities. Some of these compounds modulate the deregulated activity of HDACs (e.g. curcumin, apigenin, EGCG, resveratrol, and quercetin). These phytochemicals have been shown to inhibit some of the cancer hallmarks through HDAC modulation. The present review discusses the epigenetic mechanisms by which HDACs contribute to carcinogenesis and resistance of lung cancer cells to anticancer therapies.

3.
Front Genet ; 13: 823238, 2022.
Article in English | MEDLINE | ID: mdl-35186039

ABSTRACT

Circular RNAs (CircRNAs) are a class of small endogenous noncoding RNA that are formed by means of either the spliceosome or lariat-type splicing. CircRNAs have multiple regulatory functions and have been detected in different cell types, like normal, tumor and immune cells. CircRNAs have been suggested to regulate T cell functions in response to cancer. CircRNAs can enter into T cells and promote the expression of molecules that either trigger antitumoral responses or promote suppression and the consequent evasion to the immune response. Additionally, circRNAs may promote tumor progression and resistance to anticancer treatment in different types of neoplasias. In this minireview we discuss the impact of circRNAs and its function in the regulation of the T-cells in immune response caused by cancer therapies.

5.
Front Oncol ; 11: 718636, 2021.
Article in English | MEDLINE | ID: mdl-34900673

ABSTRACT

Radiation therapy has been used worldwide for many decades as a therapeutic regimen for the treatment of different types of cancer. Just over 50% of cancer patients are treated with radiotherapy alone or with other types of antitumor therapy. Radiation can induce different types of cell damage: directly, it can induce DNA single- and double-strand breaks; indirectly, it can induce the formation of free radicals, which can interact with different components of cells, including the genome, promoting structural alterations. During treatment, radiosensitive tumor cells decrease their rate of cell proliferation through cell cycle arrest stimulated by DNA damage. Then, DNA repair mechanisms are turned on to alleviate the damage, but cell death mechanisms are activated if damage persists and cannot be repaired. Interestingly, some cells can evade apoptosis because genome damage triggers the cellular overactivation of some DNA repair pathways. Additionally, some surviving cells exposed to radiation may have alterations in the expression of tumor suppressor genes and oncogenes, enhancing different hallmarks of cancer, such as migration, invasion, and metastasis. The activation of these genetic pathways and other epigenetic and structural cellular changes in the irradiated cells and extracellular factors, such as the tumor microenvironment, is crucial in developing tumor radioresistance. The tumor microenvironment is largely responsible for the poor efficacy of antitumor therapy, tumor relapse, and poor prognosis observed in some patients. In this review, we describe strategies that tumor cells use to respond to radiation stress, adapt, and proliferate after radiotherapy, promoting the appearance of tumor radioresistance. Also, we discuss the clinical impact of radioresistance in patient outcomes. Knowledge of such cellular strategies could help the development of new clinical interventions, increasing the radiosensitization of tumor cells, improving the effectiveness of these therapies, and increasing the survival of patients.

6.
J Immunol Res ; 2021: 6668573, 2021.
Article in English | MEDLINE | ID: mdl-33506060

ABSTRACT

Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Drug Resistance, Neoplasm/immunology , Epithelial-Mesenchymal Transition/immunology , Immune Checkpoint Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/therapy , B7-H1 Antigen/metabolism , Breast/immunology , Breast/pathology , Breast/surgery , Chemotherapy, Adjuvant/methods , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mastectomy , Neoadjuvant Therapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Progression-Free Survival , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
7.
Oxid Med Cell Longev ; 2020: 3176375, 2020.
Article in English | MEDLINE | ID: mdl-33149807

ABSTRACT

A hypoxic microenvironment is a hallmark in different types of tumors; this phenomenon participates in a metabolic alteration that confers resistance to treatments. Because of this, it was proposed that a combination of 2-methoxyestradiol (2-ME) and sodium dichloroacetate (DCA) could reduce this alteration, preventing proliferation through the reactivation of aerobic metabolism in lung adenocarcinoma cell line (A549). A549 cells were cultured in a hypoxic chamber at 1% O2 for 72 hours to determine the effect of this combination on growth, migration, and expression of hypoxia-inducible factors (HIFs) by immunofluorescence. The effect in the metabolism was evaluated by the determination of glucose/glutamine consumption and the lactate/glutamate production. The treatment of 2-ME (10 µM) in combination with DCA (40 mM) under hypoxic conditions showed an inhibitory effect on growth and migration. Notably, this reduction could be attributed to 2-ME, while DCA had a predominant effect on metabolic activity. Moreover, this combination decreases the signaling of HIF-3α and partially HIF-1α but not HIF-2α. The results of this study highlight the antitumor activity of the combination of 2-ME 10 µl/DCA 40 mM, even in hypoxic conditions.


Subject(s)
2-Methoxyestradiol/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Dichloroacetic Acid/therapeutic use , Lung Neoplasms/drug therapy , Tumor Hypoxia , Tumor Microenvironment , 2-Methoxyestradiol/pharmacology , A549 Cells , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis Regulatory Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Dichloroacetic Acid/pharmacology , Glucose/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Glycolysis/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Lung Neoplasms/pathology , Repressor Proteins/metabolism , Signal Transduction/drug effects , Tumor Hypoxia/drug effects , Tumor Microenvironment/drug effects , Wound Healing/drug effects
8.
Front Oncol ; 10: 1152, 2020.
Article in English | MEDLINE | ID: mdl-32850327

ABSTRACT

Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.

9.
Front Oncol ; 10: 807, 2020.
Article in English | MEDLINE | ID: mdl-32596143

ABSTRACT

Lactic acidosis (3 to 40 mM, pH < 6.9) is a condition found in solid tumors because tumor cells have a high rate of glucose consumption and lactate production even in the presence of oxygen; nevertheless, the microenvironment might still provide a sufficient glucose supply. Lactic acidosis has been proposed to shift metabolism from aerobic glycolysis toward oxidative phosphorylation (OXPHOS). We tested if lung tumor cells cultured under lactic acidosis shift their metabolism from glycolysis to OXPHOS by consuming extracellular lactate, increasing growth rate. We analyzed lung adenocarcinoma (A-549, A-427) cell lines and non-transformed fibroblast cells (MRC-5), which were cultured using RPMI-1640 medium initially containing lactate (2 mM) and glucose (10 mM), at pH 7.2 or 6.2 and oxygen tension 21% O2 (normoxia) or 2% O2 (hypoxia). We obtained growth curves, as well as glucose consumption and lactate production rates (measured during exponential growth) for each cell line. HIF-1α (Hypoxia-inducible factor 1 α), CS (citrate synthase) and AMPK (AMP-activated protein kinase) transcript levels were analyzed using RT-qPCR. By flow cytometry, we determined: (a) expression of glucose transporters (GLUT)1 and 4; (b) lactate transporters (MCT)1 and 4; (c) cell cycle profile, and (d) protein levels of HIF-1α, total and phosphorylated AMPK (pAMPK). Mitochondrial functionality was evaluated by measuring O2 consumption in tumor cells using polarography and a Clark-type electrode. Tumor and non-transformed cells used both aerobic glycolysis and OXPHOS for obtaining energy. As of 48 h of culture, lactate levels ranged from (4.5-14 mM), thus forming a lactic environment. Lactic acidosis diminished GLUT1/GLUT4 expression and glucose consumption in A-549, but not in A-427 cells, and induced differential expression of HIF-1α, AMPK, and CS transcripts. A-427 cells increased pAMPK and HIF-1α levels and shifted their metabolism increasing OXPHOS; thus supporting cell growth. Conversely, A-549 cells increased HIF-1α protein levels, but did not activate AMPK and diminished OXPHOS. A-549 cells survived by arresting cells in G1-phase. Our findings show that lactic acidosis diminishes Warburg effect in tumor cells, but this change does not necessarily promote a shift to OXPHOS. Hence, lung adenocarcinomas show a differential metabolic response even when they are under the same microenvironmental conditions.

10.
Front Oncol ; 9: 1053, 2019.
Article in English | MEDLINE | ID: mdl-31681589

ABSTRACT

Lactic acidosis, glucose deprivation and hypoxia are conditions frequently found in solid tumors because, among other reasons, tumors switch to Warburg effect and secrete high levels of lactate, which decreases the pH (<6. 9) in the microenvironment. We hypothesized that lung cancer cells consume lactate and induce mitochondrial biogenesis to support survival and proliferation in lactic acidosis with glucose deprivation even under hypoxia. We examined lung adenocarcinoma cell lines (A-427 and A-549), a breast cancer cell line (MCF-7) and non-transformed fibroblasts (MRC-5). Cells were cultured using RPMI-1640 medium with 28 mM lactate varying pH (6.2 or 7.2) under normoxia (atmospheric O2) or hypoxia (2% O2). Cellular growth was followed during 96 h, as well as lactate, glutamine and glutamate levels, which were measured using a biochemical analyzer. The expression levels of monocarboxylate transporters (MCT1 and MCT4) were evaluated by flow cytometry. To evaluate mitochondrial biogenesis, mitochondrial mass was analyzed by flow cytometry and epifluorescence microscopy. Also, mitochondrial DNA (mtDNA) was measured by qPCR. Transcript levels of Nuclear Respiratory Factors (NRF-1 and NRF-2) and Transcription Factor A Mitochondrial (TFAM) were determined using RT-qPCR. The specific growth rate of A-549 and A-427 cells increased in lactic acidosis compared with neutral lactosis, either under normoxia or hypoxia, a phenomenon that was not observed in MRC-5 fibroblasts. Under hypoxia, A-427 and MCF-7 cells did not survive in neutral lactosis but survived in lactic acidosis. Under lactic acidosis, A-427 and MCF-7 cells increased MCT1 levels, reduced MCT4 levels and consumed higher lactate amounts, while A-549 cells consumed glutamine and decreased MCT1 and MCT4 levels with respect to neutral lactosis condition. Lactic acidosis, either under normoxia or hypoxia, increased mitochondrial mass and mtDNA levels compared with neutral lactosis in all tumor cells but not in fibroblasts. A-549 and MCF-7 cells increased levels of NRF-1, NRF-2, and TFAM with respect to MRC-5 cells, whereas A-427 cells upregulated these transcripts under lactic acidosis compared with neutral lactosis. Thus, lung adenocarcinoma cells induce mitochondrial biogenesis to support survival and proliferation in lactic acidosis with glucose deprivation.

11.
Scand J Immunol ; 90(3): e12802, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31269269

ABSTRACT

Glucose and nutrient uptake is essential in supporting T cell activation and is increased upon CD3/CD28 stimulation. As T cells from pleural effusions secondary to lung cancer show impaired function, we hypothesized that these cells might have altered expression of nutrient transporters. Here, we analysed by flow cytometry the expression of the transferrin receptor CD71, amino acid transporter CD98 and glucose transporter Glut1 and glucose uptake in pleural effusion-derived T cells from lung cancer patients, after stimulation via CD3/CD28 under normoxia or hypoxia (2% O2 ). We compared the response of T cells from pleural effusions secondary to lung cancer with that of T cells from nonmalignant effusions. In memory T cells from both groups, anti-CD3/CD28-stimulation under normoxia upregulated CD98 and CD71 expression (measured as median fluorescence intensity, MFI) in comparison with anti-CD3-stimulation. Costimulation under hypoxia tended to increase CD98 expression compared to CD3-stimulation in memory T cells from both groups. Remarkably, in the cancer group, memory T cells stimulated via CD3/CD28 under hypoxia failed to increase CD71 and Glut1 expression levels compared to the cells receiving anti-CD3 stimulation, a phenomenon that contrasted with the behaviour of memory T cells from nonmalignant effusions. Consequently, glucose uptake by memory T cells from the cancer group was not increased after CD3/CD28 stimulation under hypoxia, implying that their glycolytic metabolism is defective. As this process is required for inducing an antitumoural response, our study suggests that memory T cells are rendered dysfunctional and are unable to eliminate lung tumour cells.


Subject(s)
CD28 Antigens/metabolism , CD3 Complex/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Immunologic Memory/immunology , Lung Neoplasms/metabolism , Pleural Effusion/metabolism , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Lung Neoplasms/immunology , Lymphocyte Activation/immunology , Male , Middle Aged , Pleural Effusion/immunology , T-Lymphocytes/metabolism
12.
Int J Oncol ; 54(4): 1155-1167, 2019 04.
Article in English | MEDLINE | ID: mdl-30720054

ABSTRACT

In addition to their role in providing cellular energy, mitochondria fulfill a key function in cellular calcium management. The present review provides an integrative view of cellular and mitochondrial calcium homeostasis, and discusses how calcium regulates mitochondrial dynamics and functionality, thus affecting various cellular processes. Calcium crosstalk exists in the domain created between the endoplasmic reticulum and mitochondria, which is known as the mitochondria­associated membrane (MAM), and controls cellular homeostasis. Calcium signaling participates in numerous biochemical and cellular processes, where calcium concentration, temporality and durability are part of a regulated, finely tuned interplay in non­transformed cells. In addition, cancer cells modify their MAMs, which consequently affects calcium homeostasis to support mesenchymal transformation, migration, invasiveness, metastasis and autophagy. Alterations in calcium homeostasis may also support resistance to apoptosis, which is a serious problem facing current chemotherapeutic treatments. Notably, mitochondrial dynamics are also affected by mitochondrial calcium concentration to promote cancer survival responses. Dysregulated levels of mitochondrial calcium, alongside other signals, promote mitoflash generation in tumor cells, and an increased frequency of mitoflashes may induce epithelial­to­mesenchymal transition. Therefore, cancer cells remodel their calcium balance through numerous mechanisms that support their survival and growth.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Animals , Biological Transport , Calcium Signaling , Homeostasis , Humans , Mitochondrial Dynamics
13.
Cancer Immunol Immunother ; 66(6): 765-776, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28289860

ABSTRACT

Malignant pleural effusions are frequent in patients with advanced stages of lung cancer and are commonly infiltrated by lymphocytes and tumor cells. CD8+ T cells from these effusions have reduced effector functions. The programmed death receptor 1(PD-1)/programmed death ligand 1 (PD-L1) pathway is involved in T-cell exhaustion, and it might be responsible for T-cell dysfunction in lung cancer patients. Here, we show that PD-L1 is expressed on tumor cell samples from malignant effusions, on lung cancer cell lines, and, interestingly, on MRC-5 lung fibroblasts. PD-L1 was up-regulated in lung cancer cell lines upon treatment with IFN-gamma, but not under hypoxic conditions, as detected by RT-qPCR and flow cytometry. Blockade of PD-L1 on tumor cells restored granzyme-B expression in allogenic CD8+ T cells in vitro. Remarkably, pleural effusion CD8+ T cells that responded to the tumor antigens MAGE-3A and WT-1 (identified as CD137+ cells) were lower in frequency than CMV pp65-responding CD8+ T cells and did not have an exhausted phenotype (PD-1+ TIM-3+). Nonetheless, tumor-responding CD8+ T cells had a memory phenotype and expressed higher levels of PD-1. A PD-L1 blocking antibody increased the expression of granzyme-B and perforin on polyclonal- and tumor-stimulated CD8+ T cells. Taken together, our data show that rather than being exhausted, tumor-responding CD8+ T cells are not completely differentiated into effector cells and are prone to negative regulation by PD-L1. Hence, our study provides evidence that lung cancer patients respond to immunotherapy due to blockade of the PD-L1/PD-1 pathway.


Subject(s)
Adenocarcinoma/immunology , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/immunology , Lung Neoplasms/immunology , Mesothelioma/immunology , Pleural Effusion/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets/immunology , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Male , Mesothelioma/pathology , Middle Aged , Pleural Effusion/pathology , Signal Transduction
14.
Front Immunol ; 7: 52, 2016.
Article in English | MEDLINE | ID: mdl-26909082

ABSTRACT

Malignant transformation of cells leads to enhanced glucose uptake and the conversion of a larger fraction of pyruvate into lactate, even under normoxic conditions; this phenomenon of aerobic glycolysis is largely known as the Warburg effect. This metabolic reprograming serves to generate biosynthetic precursors, thus facilitating the survival of rapidly proliferating malignant cells. Extracellular lactate directs the metabolic reprograming of tumor cells, thereby serving as an additional selective pressure. Besides tumor cells, stromal cells are another source of lactate production in the tumor microenvironment, whose role in both tumor growth and the antitumor immune response is the subject of intense research. In this review, we provide an integral perspective of the relationship between lactate and the overall tumor microenvironment, from lactate structure to metabolic pathways for its synthesis, receptors, signaling pathways, lactate-producing cells, lactate-responding cells, and how all contribute to the tumor outcome. We discuss the role of lactate as an immunosuppressor molecule that contributes to tumor evasion and we explore the possibility of targeting lactate metabolism for cancer treatment, as well as of using lactate as a prognostic biomarker.

15.
Biomed Res Int ; 2015: 430943, 2015.
Article in English | MEDLINE | ID: mdl-26582240

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4(+) T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-ß subset of CD4(+)CD25(+)CD127(-) Treg cells, which overexpressed LAP TGF-ß. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-ß subset of CD4(+)CD25(+)CD127(-) Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells.


Subject(s)
Adenocarcinoma/blood , Inflammation/blood , Lung Neoplasms/blood , Peptides/blood , Protein Precursors/blood , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/blood , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Adult , Aged , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Female , Humans , Immune Tolerance/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Interleukin-2/blood , Interleukin-2 Receptor alpha Subunit/biosynthesis , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-4/blood , Interleukin-6/blood , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
16.
Anticancer Res ; 35(3): 1529-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25750307

ABSTRACT

BACKGROUND: Regulatory T-(Treg) and pro-inflammatory T-helper 17 (Th17) cells have been reported to be involved in the pathogenesis of pleural effusions caused by lung cancer. However, the presence of these subsets might not be a consequence of tumor pathogenesis, but rather a result of the pleural effusion itself, irrespective of its origin. In the present study, we analyzed the balance between these CD4+ T-cell subsets and compared them with those in non-malignant pleural effusions. PATIENTS AND METHODS: We detected the frequencies of Treg and Th17 cells, identified as cluster of differentiation (CD)3+CD4+CD25+CD127low/- and CD3+CD4+ retinoid-related orphan receptor γt (RORγt)+ cells respectively, and proportions of interleukin (IL)17A-producing CD4+ cells in pleural effusions of patients with lung cancer, tuberculous and non-chronic pathologies by flow cytometry. The cytokine profile of stimulated CD4+ T-cells from tuberculosis and cancer groups was compared. RESULTS: The proportion of Th17 cells were increased whereas Tregs were decreased in both tuberculosis and cancer, but not in non-chronic pathologies. Nevertheless, CD4+ T-cells from lung cancer effusions secreted interferon (IFN)γ, IL6 and IL17A, whereas CD4+ T-cells from tuberculous effusions secreted IL10 and low levels of IFNγ. CONCLUSION: Although effusions from patients with chronic pathologies presented higher proportions of Th17 cells in comparison to those with non-chronic pathologies, only Th17 cells from malignant effusions maintained their proinflammatory profile after stimulation. Thus, in the pleural compartment of patients with lung cancer, a proinflammatory environment might be favored and possibly maintained by Th17 response.


Subject(s)
Lung Neoplasms/immunology , Pleural Effusion/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Adult , Aged , Aged, 80 and over , Cytokines/biosynthesis , Humans , Middle Aged
17.
Appl Immunohistochem Mol Morphol ; 22(2): 105-13, 2014.
Article in English | MEDLINE | ID: mdl-24752173

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide and non-small cell lung carcinoma (NSCLC) is the most common type of lung carcinomas. In adenocarcinomas, the most frequent histologic type of NSCLC, dendritic cells (DCs) are localized in close contact with tumor cells, and tumor-infiltrating lymphocytes (TILs) are observed in the peritumoral zones. In NSCLC, no studies investigating the density of intratumoral DCs and their impact on the density of TILs have been performed. In addition, the role of the alarmin high-mobility group box1 (HMGB1) in intratumoral DCs recruitment has not been analyzed. In the present study, a total of 82 cases of advanced stages of NSCLC were included. Tissue samples were obtained from biopsies and autopsies. DCs in biopsies or combinations of DCs and NK cells, CD3 T lymphocytes, or CD8 T lymphocytes from autopsy specimens were quantified in high power fields. Also, distribution of HMGB1 in tumor cells was detected. In lung adenocarcinomas, irrespective of subclassification, high densities of infiltrating DCs directly associated to high densities of peritumoral TILs. A 2.5-fold increase in TILs was found in specimens with high densities of infiltrating DCs compared with TILs from adenocarcinomas with low densities of infiltrating DCs. High densities of infiltrating DCs were associated with lung adenocarcinomas expressing cytoplasmic or nuclear-cytoplasmic HMGB1. Our results suggest that in adenocarcinoma patients, HMGB1 produced by tumor cells recruits DCs, which associate to an increase of TILs. Encouraging tumor-DCs-T lymphocytes interactions should improve the quality of life and survival of NSCLC patients.


Subject(s)
CD8-Positive T-Lymphocytes/pathology , Carcinoma, Non-Small-Cell Lung/diagnosis , Cell Nucleus/metabolism , Cytoplasm/metabolism , Dendritic Cells/immunology , HMGB1 Protein/metabolism , Killer Cells, Natural/pathology , Lung Neoplasms/diagnosis , Lymphocytes, Tumor-Infiltrating/pathology , Autopsy , Biopsy , CD3 Complex/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Immunohistochemistry , Lung Neoplasms/pathology , Protein Transport
19.
Exp Lung Res ; 40(1): 12-21, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24246049

ABSTRACT

The ribonucleoproteins (hnRNPs) have important roles in multiple aspects of nucleic acid metabolism and in the regulation of different cellular processes. Abnormal expression of hnRNPs has been reported in several types of cancer including lung, pancreatic, and gastric carcinomas. Heterogenous tumor cell populations generate a tumor microenvironment that can present normoxic, hypoxic, or acidic regions. The analysis of hnRNP transcriptional responses considering the changing nature of the tumor microenvironment is important to understand tumor cell survival under stress conditions. We analyzed the transcriptional response of hnRNPA0, A1, A2, B1, and A3 in lung tumor cell lines under acidosis, hypoxia, and serum deprivation conditions. We used qRT-PCR to obtain a relative quantification of the hnRNPA/B transcript levels. We found that the hnRNPA2 transcript was the most abundant, followed by B1, A0, and A1. Expression of hnRNPA3 was the lowest, although its transcript levels were the most constant. hnRNPA/B transcript levels in lung tumor cell lines responded to changes in the microenvironment; however, hnRNPB1 transcript levels relative to hnRNPA2 expression did no change in all tested stress conditions, indicating that the alternative splicing between these isoforms was constant. hnRNPA1, A2, and B1 transcript levels were upregulated under serum deprivation conditions; possibly to promote a migration phenotype. Our data provide new insights into the transcriptional responses of ribonucleoproteins that might favor tumor cell survival and migration.


Subject(s)
Acidosis/genetics , Hypoxia/genetics , Lung Neoplasms/genetics , Ribonucleoproteins/genetics , Transcription, Genetic/genetics , Cell Line, Tumor , Down-Regulation/genetics , Humans , Lung/pathology , Up-Regulation/genetics
20.
J Basic Microbiol ; 53(4): 365-80, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22914992

ABSTRACT

Adenosine-5-triphosphate (ATP) plays a fundamental role in many cellular processes such as transport, central carbon metabolism, biosynthetic reactions, macromolecular synthesis, signal transduction and cellular division. In addition, the intracellular [ATP]/[ADP] ratio in Escherichia coli plays an important role in controlling the specific rates of growth (µ), glucose consumption (qGlc ) and oxygen uptake (qO2), as well as the transcriptome pattern in the cell, as was recently reported. In the current study, the energetic level (expressed as [ATP]/[ADP] ratio) was substantially reduced in E. coli strains by either over-expressing the F1 -ATPase activity (JMAGD(+)) or inactivating ATP synthase (JMat(-)). The physiological characterization of the wild-type JM101 strain and its derivative JMAGD(+) and JMatp(-) strains was conducted in bioreactors containing minimal medium with glucose. The inactivation of the atp operon and F1 -ATPase overexpression significantly diminished the energetic level and cAMP concentration in derivative strains. Relative transcription levels of 105 genes involved in glucose transport, glycolysis, tricarboxylic acid (TCA) cycle, fermentation, respiration, transcriptional regulators, transcription and genes involved in stress were determined by using qPCR. Interestingly, in the JMAGD(+) and JMatp(-) strains, having a reduced energetic level, many transcripts of glycolysis, TCA cycle and respiratory genes were down-regulated when compared to wild type JM101. The transcriptional responses, detected in the strains with reduced energetic level show down-regulation of genes involved in central carbon metabolism and respiration, these results are apposite to the observed trends of increased metabolic fluxes in glucose consumption, glycolysis, acetate synthesis, TCA cycle and respiration. Regulation mediated by CRP-cAMP complex may explain some observed transcriptional responses of TCA cycle genes, since cAMP concentration and crp transcript level were significant reduced in the JMatp(-) mutant. Therefore, the substantial reduction of [ATP]/[ADP] ratio had a relevant effect on the CRP-cAMP regulatory system (among other global regulators), which may trigger an extensive transcriptional response.


Subject(s)
Adenosine Triphosphate/metabolism , Carbon/metabolism , Energy Metabolism , Escherichia coli/physiology , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Oxygen/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Fermentation , Gene Deletion , Gene Expression Profiling , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...