Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Med Sci Sports ; 34(1): e14526, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858294

ABSTRACT

BACKGROUND: Ethylene and vinyl acetate (EVA) and polyether block amide (PEBA) are recently the most widely used materials for advanced footwear technology (AFT) that has been shown to improve running economy (RE). This study investigated the effects of these midsole materials on RE and biomechanics, in both fresh and worn state (after 450 km). METHODS: Twenty-two male trained runners participated in this study. Subjects ran four 4-min trials at 13 km‧h-1 with both fresh EVA and PEBA AFT and with the same models with 450 km of wear using a randomized crossover experimental design. We measured energy cost of running (W/kg), spatiotemporal, and neuromuscular parameters. RESULTS: There were significant differences in RE between conditions (p = 0.01; n2 = 0.17). There was a significant increase in energy cost in the worn PEBA condition compared with new (15.21 ± 1.01 and 14.87 ± 0.99 W/kg; p < 0.05; ES = 0.54), without differences between worn EVA (15.13 ± 1.14 W/kg; p > 0.05), and new EVA (15.15 ± 1.13 w/kg; ES = 0.02). The increase in energy cost between new and worn was significantly higher for the PEBA shoes (0.32 ± 0.38 W/kg) but without significant increase for the EVA shoes (0.06 ± 0.58 W/kg) (p < 0.01; ES = 0.51) with changes in step frequency and step length. The new PEBA shoes had lower energy cost than the new EVA shoes (p < 0.05; ES = 0.27) with significant differences between conditions in contact time. CONCLUSION: There is a clear RE advantage of incorporating PEBA versus EVA in an AFT when the models are new. However, after 450 km of use, the PEBA and EVA shoes had similar RE.


Subject(s)
Boronic Acids , Running , Humans , Male , Biomechanical Phenomena , Cross-Over Studies , Shoes
SELECTION OF CITATIONS
SEARCH DETAIL
...