Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(2): 023601, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38277591

ABSTRACT

We present an experimental proposal for the rapid preparation of the center of mass of a levitated particle in a macroscopic quantum state, that is a state delocalized over a length scale much larger than its zero-point motion and that has no classical analog. This state is prepared by letting the particle evolve in a static double-well potential after a sudden switchoff of the harmonic trap, following initial center-of-mass cooling to a sufficiently pure quantum state. We provide a thorough analysis of the noise and decoherence that is relevant to current experiments with levitated nano- and microparticles. In this context, we highlight the possibility of using two particles, one evolving in each potential well, to mitigate the impact of collective sources of noise and decoherence. The generality and scalability of our proposal make it suitable for implementation with a wide range of systems, including single atoms, ions, and Bose-Einstein condensates. Our results have the potential to enable the generation of macroscopic quantum states at unprecedented scales of length and mass, thereby paving the way for experimental exploration of the gravitational field generated by a source mass in a delocalized quantum state.

2.
Science ; 374(6564): eabg3027, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34618558

ABSTRACT

The control of levitated nano- and micro-objects in vacuum­which capitalizes on scientific achievements in the fields of atomic physics, control theory, and optomechanics­is of considerable interest. The ability to couple the motion of levitated systems to internal degrees of freedom, as well as to external forces and systems, provides opportunities for science and technology. Attractive research directions, ranging from fundamental quantum physics to commercial sensors, have been unlocked by the many recent experimental achievements, including motional ground-state cooling of an optically levitated nanoparticle. Here we review the status, challenges, and prospects of levitodynamics, the multidisciplinary research area devoted to understanding, controlling, and using levitated nano- and micro-objects in vacuum.

3.
Phys Rev Lett ; 127(2): 023601, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34296896

ABSTRACT

We propose to optimally control the harmonic potential of a levitated nanoparticle to quantum delocalize its center-of-mass motional state to a length scale orders of magnitude larger than the quantum zero-point motion. Using a bang-bang control of the harmonic potential, including the possibility of inverting it, the initial ground-state-cooled levitated nanoparticle coherently expands to large scales and then contracts to the initial state in a time-optimal way. We show that this fast loop protocol can be used to enhance force sensing as well as to dramatically boost the entangling rate of two weakly interacting nanoparticles. We parameterize the performance of the protocol, and therefore the macroscopic quantum regime that could be explored, as a function of displacement and frequency noise in the nanoparticle's center-of-mass motion. This noise analysis accounts for the sources of decoherence relevant to current experiments.

4.
Phys Rev Lett ; 126(10): 103602, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784159

ABSTRACT

We propose to use chirped pulses propagating near a band gap to remotely address quantum emitters. We introduce a particular family of chirped pulses that dynamically self-compress to subwavelength spot sizes during their evolution in a medium with a quadratic dispersion relation. We analytically describe how the compression distance and width of the pulse can be tuned through its initial parameters. We show that the interaction of such pulses with a quantum emitter is highly sensitive to its position due to effective Landau-Zener processes induced by the pulse chirping. Our results propose pulse engineering as a powerful control and probing tool in the field of quantum emitters coupled to structured reservoirs.

5.
Phys Rev Lett ; 124(16): 163604, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32383959

ABSTRACT

We demonstrate a new mechanical transduction platform for individual spin qubits. In our approach, single micromagnets are trapped using a type-II superconductor in proximity of spin qubits, enabling direct magnetic coupling between the two systems. Controlling the distance between the magnet and the superconductor during cooldown, we demonstrate three-dimensional trapping with quality factors around 1×10^{6} and kHz trapping frequencies. We further exploit the large magnetic moment to mass ratio of this mechanical oscillator to couple its motion to the spin degrees of freedom of an individual nitrogen vacancy center in diamond. Our approach provides a new path towards interfacing individual spin qubits with mechanical motion for testing quantum mechanics with mesoscopic objects, realization of quantum networks, and ultrasensitive metrology.

6.
Phys Rev Lett ; 121(21): 213903, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30517802

ABSTRACT

Lorentz reciprocity establishes a stringent relation between electromagnetic fields and their sources. For static magnetic fields, a relation between magnetic sources and fields can be drawn in analogy to the Green's reciprocity principle for electrostatics. So far, the magnetostatic reciprocity principle remains unchallenged and the magnetostatic interaction is assumed to be symmetric (reciprocal). Here, we theoretically and experimentally show that a linear and isotropic electrically conductive material moving with constant velocity is able to circumvent the magnetostatic reciprocity principle and realize a diode for magnetic fields. This result is demonstrated by measuring an extremely asymmetric magnetic coupling between two coils that are located near a moving conductor. The possibility to generate controlled unidirectional magnetic couplings implies that the mutual inductances between magnetic elements or circuits can be made extremely asymmetric. We anticipate that this result will provide novel possibilities for applications and technologies based on magnetically coupled elements and might open fundamentally new avenues in artificial magnetic spin systems.

7.
Phys Rev Lett ; 120(3): 033602, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400532

ABSTRACT

In a closely packed ensemble of quantum emitters, cooperative effects are typically suppressed due to the dephasing induced by the dipole-dipole interactions. Here, we show that by adding sufficiently strong collective dephasing, cooperative effects can be restored. Specifically, we show that the dipole force on a closely packed ensemble of strongly driven two-level quantum emitters, which collectively dephase, is enhanced in comparison to the dipole force on an independent noninteracting ensemble. Our results are relevant to solid-state systems with embedded quantum emitters such as color centers in diamond and superconducting qubits in microwave cavities and waveguides.

8.
Phys Rev Lett ; 119(16): 167202, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29099212

ABSTRACT

We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.

9.
Phys Rev Lett ; 119(4): 043904, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-29341731

ABSTRACT

We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.

10.
Phys Rev Lett ; 112(25): 253901, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-25014816

ABSTRACT

We show how the static magnetic field of a finite source can be transferred and routed to arbitrary long distances. This is achieved by using transformation optics, which results in a device made of a material with a highly anisotropic magnetic permeability. We show that a simplified version of the device, made by a superconducting-ferromagnet hybrid, also leads to an excellent transfer of the magnetic field. The latter is demonstrated with a proof-of-principle experiment where a ferromagnet tube coated with a superconductor improves the transfer of static magnetic fields with respect to conventional methods by a 400% factor over distances of 14 cm.

11.
Phys Rev Lett ; 111(14): 145304, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24138251

ABSTRACT

We propose and analyze a nanoengineered vortex array in a thin-film type-II superconductor as a magnetic lattice for ultracold atoms. This proposal addresses several of the key questions in the development of atomic quantum simulators. By trapping atoms close to the surface, tools of nanofabrication and structuring of lattices on the scale of few tens of nanometers become available with a corresponding benefit in energy scales and temperature requirements. This can be combined with the possibility of magnetic single site addressing and manipulation together with a favorable scaling of superconducting surface-induced decoherence.

12.
Phys Rev Lett ; 109(14): 147205, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23083277

ABSTRACT

We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is possible to perform ground-state cooling and prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time-dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be very well isolated from the environment. Hence, we propose to combine the technology of magnetic microtraps and superconducting qubits to bring relatively large objects to the quantum regime.

13.
Phys Rev Lett ; 108(6): 065302, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401082

ABSTRACT

We propose a method to probe time-dependent correlations of nontrivial observables in many-body ultracold lattice gases. The scheme uses a quantum nondemolition matter-light interface, first to map the observable of interest on the many-body system into the light and then to store coherently such information into an external system acting as a quantum memory. Correlations of the observable at two (or more) instances of time are retrieved with a single final measurement that includes the readout of the quantum memory. Such a method brings to reach the study of dynamics of many-body systems in and out of equilibrium by means of quantum memories in the field of quantum simulators.

14.
Phys Rev Lett ; 107(2): 020405, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21797585

ABSTRACT

We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object separated by distances of the order of its size. This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter-wave interferometry. An analysis and simulation of the experiment is performed taking into account standard sources of decoherence. We provide an operational parameter regime using present-day and planned technology.

15.
Phys Rev Lett ; 97(13): 130501, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-17026016

ABSTRACT

We show that there exists a gap between the performance of separable and collective measurements in the qubit mixed-state estimation that persists in the large sample limit. We characterize the gap with sharp asymptotic bounds on mean fidelity. We present an adaptive protocol that attains the separable measurement bound. This protocol uses von Neumann measurements and can be easily implemented with current technology.

16.
Phys Rev Lett ; 95(11): 110504, 2005 Sep 09.
Article in English | MEDLINE | ID: mdl-16196993

ABSTRACT

Given a large number N of copies of a qubit state of which we wish to estimate its purity, we prove that separable-measurement protocols can be as efficient as the optimal joint-measurement one if classical communication is used. This shows that the optimal estimation of the entanglement of a two-qubit state can also be achieved asymptotically with fully separable measurements. Thus, quantum memories provide no advantage in this situation. The relationship between our global Bayesian approach and the quantum Cramér-Rao bound is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...