Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 175: 113269, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35123273

ABSTRACT

Microplastic ingestion was studied in A. aurita, a bloom-forming, circumglobal medusa. Here, we determined whether factors such as the concentration of polyethylene microspheres (75-90 µm) or the absence/presence of prey affect the ingestion, duration of microspheres in the gastrovascular cavity (time of presence), and retention time. The presence of polyethylene microspheres' was determined by exposing medusae during 480 min to three different treatments (5000, 10,000, 20,000 particles L-1), and was checked every 10 min to ascertain whether they had incorporated any. Preliminary results show that microsphere ingestion occurred only in the presence of prey (⁓294 Artemia nauplii L-1). The time of presence of microbeads in A. aurita increased (103, 177, and 227 min), with increasing microplastic concentration, and the microbeads were egested within 150 min. This study initiates the understanding of the potential implications that arise of the encounter between jellyfish and microplastic agglomerates, and with perspectives for future research.


Subject(s)
Scyphozoa , Water Pollutants, Chemical , Animals , Eating , Microspheres , Plastics , Polyethylene , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 810: 152252, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34896493

ABSTRACT

Ocean acidification (OA) is one of the most critical anthropogenic threats to marine ecosystems. While significant ecological responses of plankton communities to OA have been revealed mainly by small-scale laboratory approaches, the interactive effect of OA-related changes on zooplankton metabolism and their biogeochemical implications in the natural environment still remains less well understood. Here, we explore the responses of zooplankton respiration and ammonium excretion, two key processes in the nutrient cycling, to high pCO2 levels in a 9-week in situ mesocosm experiment conducted during the autumn oligotrophic season in the subtropical northeast Atlantic. By simulating an upwelling event halfway through the study, we further evaluated the combined effects of OA and nutrient availability on the physiology of micro-and mesozooplankton. OA conditions generally resulted in a reduction in the biomass-specific metabolic and enzymatic rates, particularly in the mesozooplankton community. The situation reversed after the nutrient-rich deep-water addition, which initially promoted a diatom bloom and increased heterotrophic activities in all mesocosms. Under high pCO2 conditions (>800 µatm), however, the nutrient fertilization triggered the proliferation of the harmful alga Vicicitus globosus, with important consequences for the metabolic performance of the two zooplankton size classes. Here, the zooplankton contribution to the remineralization of organic matter and nitrogen regeneration dropped by 30% and 24%, respectively, during the oligotrophic period, and by 40% and 70% during simulated upwelling. Overall, our results indicate a potential reduction in the biogeochemical role of zooplankton under future ocean conditions, with more evident effects on the large mesozooplankton and during high productivity events.


Subject(s)
Ecosystem , Zooplankton , Animals , Carbon Dioxide , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...