Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809317

ABSTRACT

Recently, studies on cycling-based brain-computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting the cortical effect of these technologies. This study aims to analyze how sensory motor rhythms and cortical connectivity behave when volunteers command reactive motor imagery (MI) BCI that provides passive pedaling feedback. We studied 8 healthy subjects who performed pedaling MI to command an electroencephalography (EEG)-based BCI with a motorized pedal to receive passive movements as feedback. The EEG data were analyzed under the following four conditions: resting, MI calibration, MI online, and receiving passive pedaling (on-line phase). Most subjects produced, over the foot area, significant event-related desynchronization (ERD) patterns around Cz when performing MI and receiving passive pedaling. The sharpest decrease was found for the low beta band. The connectivity results revealed an exchange of information between the supplementary motor area (SMA) and parietal regions during MI and passive pedaling. Our findings point to the primary motor cortex activation for most participants and the connectivity between SMA and parietal regions during pedaling MI and passive pedaling.


Subject(s)
Brain-Computer Interfaces , Cortical Excitability , Motor Cortex , Electroencephalography , Humans , Imagination
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(4): 988-996, 2020 04.
Article in English | MEDLINE | ID: mdl-32078552

ABSTRACT

A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Electroencephalography , Humans , Lower Extremity , Stroke/complications
3.
J Neural Eng ; 17(2): 026029, 2020 04 08.
Article in English | MEDLINE | ID: mdl-31614343

ABSTRACT

OBJECTIVE: This study aims to propose and validate a subject-specific approach to recognize two different cognitive neural states (relax and pedaling motor imagery (MI)) by selecting the relevant electroencephalogram (EEG) channels. The main aims of the proposed work are: (i) to reduce the computational complexity of the BCI systems during MI detection by selecting the relevant EEG channels, (ii) to reduce the amount of data overfitting that may arise due to unnecessary channels and redundant features, and (iii) to reduce the classification time for real-time BCI applications. APPROACH: The proposed method selects subject-specific EEG channels and features based on their MI. In this work, we make use of non-negative matrix factorization to extract the weight of the EEG channels based on their contribution to MI detection. Further, the neighborhood component analysis is used for subject-specific feature selection. MAIN RESULTS: We executed the experiments using EEG signals recorded for MI where ten healthy subjects performed MI movement of the lower limb to generate motor commands. An average accuracy of 96.66%, average true positive rate (TPR) of 97.77%, average false positives rate of 4.44%, and average Kappa of 93.33% were obtained. The proposed subject-specific EEG channel selection based MI recognition system provides 13.20% improvement in detection accuracy, and 27% improvement in Kappa value with less number of EEG channels compared to the results obtained using all EEG channels. SIGNIFICANCE: The proposed subject-specific BCI system has been found significantly advantageous compared to the typical approach of using a fixed channel configuration. This work shows that fewer EEG channels not only reduce computational complexity and processing time (two times faster) but also improve the MI detection performance. The proposed method selects EEG locations related to the foot movement, which may be relevant for neuro-rehabilitation using lower-limb movements that may provide a real-time and more natural interface between patient and robotic device.


Subject(s)
Brain-Computer Interfaces , Algorithms , Electroencephalography , Humans , Imagination , Lower Extremity
4.
J Neural Eng ; 16(5): 056005, 2019 07 23.
Article in English | MEDLINE | ID: mdl-30786265

ABSTRACT

OBJECTIVE: The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. APPROACH: After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. MAIN RESULTS: For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text]. SIGNIFICANCE: Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.


Subject(s)
Bicycling/physiology , Brain-Computer Interfaces , Imagination/physiology , Lower Extremity/physiology , Stroke Rehabilitation/methods , Adult , Female , Fourier Analysis , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...