Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 104(10): 5789-5798, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38436436

ABSTRACT

BACKGROUND: The steady world population growth and the current climate emergency crisis demand the development of sustainable methods to increase crop performance and resilience to the abiotic and biotic stresses produced by global warming. Microalgal extracts are being established as sustainable sources to produce compounds that improve agricultural yield, concurrently contributing during their production process to atmospheric CO2 abatement through the photosynthetic activity of microalgae. RESULTS: In the present study, we characterize the transcriptomic response in the model plant Arabidopsis thaliana and the plant of horticultural interest Solanum lycopersicum to the foliar application of a microalgae-based commercial preparation LRM™ (AlgaEnergy, Madrid, Spain). The foliar spray of LRM™ has a substantial effect over both transcriptomes potentially mediated by various compounds within LRM™, including its phytohormone content, activating systemic acquired resistance, possibly mediated by salicylic acid biosynthetic processes, and drought/heat acclimatization, induced by stomatal control and wax accumulation during cuticle development. Specifically, the agronomic improvements observed in treated S. lycopersicum (tomato) plants include an increase in the number of fruits, an acceleration in flowering time and the provision of higher drought resistance. The effect of LRM™ foliar spray in juvenile and adult plants was similar, producing a fast response detectable 2 h from its application that was also maintained 24 h later. CONCLUSION: The present study improves our knowledge on the transcriptomic effect of a novel microalgal extract on crops and provides the first step towards a full understanding of the yield and resistance improvement of crops. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Microalgae , Solanum lycopersicum , Transcriptome , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Microalgae/metabolism , Microalgae/genetics , Microalgae/chemistry , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/chemistry , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Photosynthesis , Droughts
2.
Plant Cell ; 36(3): 559-584, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37971938

ABSTRACT

Cellular condensates are usually ribonucleoprotein assemblies with liquid- or solid-like properties. Because these subcellular structures lack a delineating membrane, determining their compositions is difficult. Here we describe a proximity-biotinylation approach for capturing the RNAs of the condensates known as processing bodies (PBs) in Arabidopsis (Arabidopsis thaliana). By combining this approach with RNA detection, in silico, and high-resolution imaging approaches, we studied PBs under normal conditions and heat stress. PBs showed a much more dynamic RNA composition than the total transcriptome. RNAs involved in cell wall development and regeneration, plant hormonal signaling, secondary metabolism/defense, and RNA metabolism were enriched in PBs. RNA-binding proteins and the liquidity of PBs modulated RNA recruitment, while RNAs were frequently recruited together with their encoded proteins. In PBs, RNAs follow distinct fates: in small liquid-like PBs, RNAs get degraded while in more solid-like larger ones, they are stored. PB properties can be regulated by the actin-polymerizing SCAR (suppressor of the cyclic AMP)-WAVE (WASP family verprolin homologous) complex. SCAR/WAVE modulates the shuttling of RNAs between PBs and the translational machinery, thereby adjusting ethylene signaling. In summary, we provide an approach to identify RNAs in condensates that allowed us to reveal a mechanism for regulating RNA fate.


Subject(s)
Arabidopsis , RNA , Processing Bodies , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Heat-Shock Response , Arabidopsis/genetics , Arabidopsis/metabolism
3.
Front Plant Sci ; 13: 855243, 2022.
Article in English | MEDLINE | ID: mdl-35599877

ABSTRACT

The characterization of the molecular mechanisms, such as high light irradiance resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies since the conquest of land by plants played a pivotal role in life evolution on Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta. Charophyta are used in evolutionary studies on plant terrestralization since they are generally accepted as the extant algal species most closely related to current land plants. In this study, we have chosen the facultative terrestrial early charophyte alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic analysis under high light in order to unveil key mechanisms involved in the early steps of plants terrestralization. We found a fast chloroplast retrograde signaling possibly mediated by reactive oxygen species and the inositol polyphosphate 1-phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) pathways inducing gene expression and accumulation of specific metabolites. Systems used by both Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an accumulation of zeaxanthin and protein folding and repair mechanisms constituted by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on proton gradient regulation 5, was strongly activated under high light. We detected a simultaneous co-activation of the non-photochemical quenching mechanisms based on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems for the synthesis, sensing, and response to the phytohormone auxin were also activated under high light in K. nitens leading to an increase in auxin content with the concomitant accumulation of amino acids such as tryptophan, histidine, and phenylalanine.

4.
BMC Bioinformatics ; 23(1): 113, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35361110

ABSTRACT

BACKGROUND: Microalgae are emerging as promising sustainable sources for biofuels, biostimulants in agriculture, soil bioremediation, feed and human nutrients. Nonetheless, the molecular mechanisms underpinning microalgae physiology and the biosynthesis of compounds of biotechnological interest are largely uncharacterized. This hinders the development of microalgae full potential as cell-factories. The recent application of omics technologies into microalgae research aims at unraveling these systems. Nevertheless, the lack of specific tools for analysing omics raw data generated from microalgae to provide biological meaningful information are hampering the impact of these technologies. The purpose of ALGAEFUN with MARACAS consists in providing researchers in microalgae with an enabling tool that will allow them to exploit transcriptomic and cistromic high-throughput sequencing data. RESULTS: ALGAEFUN with MARACAS consists of two different tools. First, MARACAS (MicroAlgae RnA-seq and Chip-seq AnalysiS) implements a fully automatic computational pipeline receiving as input RNA-seq (RNA sequencing) or ChIP-seq (chromatin immunoprecipitation sequencing) raw data from microalgae studies. MARACAS generates sets of differentially expressed genes or lists of genomic loci for RNA-seq and ChIP-seq analysis respectively. Second, ALGAEFUN (microALGAE FUNctional enrichment tool) is a web-based application where gene sets generated from RNA-seq analysis as well as lists of genomic loci from ChIP-seq analysis can be used as input. On the one hand, it can be used to perform Gene Ontology and biological pathways enrichment analysis over gene sets. On the other hand, using the results of ChIP-seq data analysis, it identifies a set of potential target genes and analyses the distribution of the loci over gene features. Graphical representation of the results as well as tables with gene annotations are generated and can be downloaded for further analysis. CONCLUSIONS: ALGAEFUN with MARACAS provides an integrated environment for the microalgae research community that facilitates the process of obtaining relevant biological information from raw RNA-seq and ChIP-seq data. These applications are designed to assist researchers in the interpretation of gene lists and genomic loci based on functional enrichment analysis. ALGAEFUN with MARACAS is publicly available on https://greennetwork.us.es/AlgaeFUN/ .


Subject(s)
Chromatin Immunoprecipitation Sequencing , Microalgae , High-Throughput Nucleotide Sequencing/methods , Humans , Microalgae/genetics , RNA-Seq , Sequence Analysis, RNA/methods
5.
Nucleic Acids Res ; 49(15): 8757-8776, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34379789

ABSTRACT

As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.


Subject(s)
Genes, Bacterial , Operon , Protein Biosynthesis , RNA, Transfer/genetics , Stress, Physiological/genetics , Anabaena/genetics , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Genome, Bacterial , Microbial Viability/genetics , RNA, Transfer/metabolism , Regulatory Sequences, Nucleic Acid
6.
Bioresour Technol ; 332: 125150, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33878543

ABSTRACT

Astaxanthin is a valuable and highly demanded ketocarotenoid pigment, for which the chlorophycean microalga Haematococcus pluvialis is an outstanding natural source. Although information on astaxanthin accumulation in H. pluvialis has substantially advanced in recent years, its underlying molecular bases remain elusive. An integrative metabolic and transcriptomic analysis has been performed for vegetative Haematococcus cells, grown both under N sufficiency (green palmelloid cells) and under moderate N limitation, allowing concurrent active cell growth and astaxanthin synthesis (reddish palmelloid cells). Transcriptional activation was noticeable in reddish cells of key enzymes participating in glycolysis, pentose phosphate cycle and pyruvate metabolism, determining the adequate provision of glyceraldehyde 3 phosphate and pyruvate, precursors of carotenoids and fatty acids. Moreover, for the first time, transcriptional regulators potentially involved in controlling astaxanthin accumulation have been identified, a knowledge enabling optimization of commercial astaxanthin production by Haematococcus through systems metabolic engineering.


Subject(s)
Chlorophyceae , Chlorophyta , Chlorophyta/genetics , Transcriptome , Xanthophylls
SELECTION OF CITATIONS
SEARCH DETAIL
...