Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 11(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36551365

ABSTRACT

Multi-drug resistance in bacteria is a major health problem worldwide. To overcome this issue, new approaches allowing for the identification and development of antibacterial agents are urgently needed. Peptides, due to their binding specificity and low expected side effects, are promising candidates for a new generation of antibiotics. For over two decades, a large diversity of antimicrobial peptides (AMPs) has been discovered and annotated in public databases. The AMP family encompasses nearly 20 biological functions, thus representing a potentially valuable resource for data mining analyses. Nonetheless, despite the availability of machine learning-based approaches focused on AMPs, these tools lack evidence of successful application for AMPs' discovery, and many are not designed to predict a specific function for putative AMPs, such as antibacterial activity. Consequently, among the apparent variety of data mining methods to screen peptide sequences for antibacterial activity, only few tools can deal with such task consistently, although with limited precision and generally no information about the possible targets. Here, we addressed this gap by introducing a tool specifically designed to identify antibacterial peptides (ABPs) with an estimation of which type of bacteria is susceptible to the action of these peptides, according to their response to the Gram-staining assay. Our tool is freely available via a web server named ABP-Finder. This new method ranks within the top state-of-the-art ABP predictors, particularly in terms of precision. Importantly, we showed the successful application of ABP-Finder for the screening of a large peptide library from the human urine peptidome and the identification of an antibacterial peptide.

2.
J Proteome Res ; 21(8): 1829-1841, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35654412

ABSTRACT

Virtual screening of protein-protein and protein-peptide interactions is a challenging task that directly impacts the processes of hit identification and hit-to-lead optimization in drug design projects involving peptide-based pharmaceuticals. Although several screening tools designed to predict the binding affinity of protein-protein complexes have been proposed, methods specifically developed to predict protein-peptide binding affinity are comparatively scarce. Frequently, predictors trained to score the affinity of small molecules are used for peptides indistinctively, despite the larger complexity and heterogeneity of interactions rendered by peptide binders. To address this issue, we introduce PPI-Affinity, a tool that leverages support vector machine (SVM) predictors of binding affinity to screen datasets of protein-protein and protein-peptide complexes, as well as to generate and rank mutants of a given structure. The performance of the SVM models was assessed on four benchmark datasets, which include protein-protein and protein-peptide binding affinity data. In addition, we evaluated our model on a set of mutants of EPI-X4, an endogenous peptide inhibitor of the chemokine receptor CXCR4, and on complexes of the serine proteases HTRA1 and HTRA3 with peptides. PPI-Affinity is freely accessible at https://protdcal.zmb.uni-due.de/PPIAffinity.


Subject(s)
Peptides , Proteins , Drug Design , Peptides/chemistry , Protein Binding , Proteins/metabolism , Support Vector Machine
3.
Protein Sci ; 28(9): 1734-1743, 2019 09.
Article in English | MEDLINE | ID: mdl-31271472

ABSTRACT

Computational tools for the analysis of protein data and the prediction of biological properties are essential in life sciences and biomedical research. Here, we introduce ProtDCal-Suite, a web server comprising a set of machine learning-based methods for studying proteins. The main module of ProtDCal-Suite is the ProtDCal software. ProtDCal translates the structural information of proteins into numerical descriptors that serve as input to machine-learning techniques. The ProtDCal-Suite server also incorporates a post-processing optional stage that allows ranking and filtering the obtained descriptors by computing their Shannon entropy values across the input set of proteins. ProtDCal's codification was used in the development of models for the prediction of specific protein properties. Thus, the other modules of ProtDCal-Suite are protein analysis tools implemented using ProtDCal's descriptors. Among them are PPI-Detect, for predicting the interaction likelihood of protein-protein and protein-peptide pairs, Enzyme Identifier, for identifying enzymes from amino acid sequences or 3D structures, and Pred-NGlyco, for predicting N-glycosylation sites. ProtDCal-Suite is freely accessible at https://protdcal.zmb.uni-due.de.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Proteins/metabolism , Databases, Protein , Internet , Machine Learning , Models, Molecular
4.
J Comput Chem ; 40(11): 1233-1242, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30768790

ABSTRACT

The prediction of peptide-protein or protein-protein interactions (PPI) is a challenging task, especially if amino acid sequences are the only information available. Machine learning methods allow us to exploit the information content in PPI datasets. However, the numerical codification of these datasets often influences the performance of data mining approaches. Here, we introduce a procedure for the general-purpose numerical codification of polypeptides. This procedure transforms pairs of amino acid sequences into a machine learning-friendly vector, whose elements represent numerical descriptors of residues in proteins. We used this numerical encoding procedure for the development of a support vector machine model (PPI-Detect), which allows predicting whether two proteins will interact or not. PPI-Detect (https://ppi-detect.zmb.uni-due.de/) outperforms state of the art sequence-based predictors of PPI. We employed PPI-Detect for the analysis of derivatives of EPI-X4, an endogenous peptide inhibitor of CXCR4, a G-protein-coupled receptor. There, we identified with high accuracy those peptides which bind better than EPI-X4 to the receptor. Also using PPI-Detect, we designed a novel peptide and then experimentally established its anti-CXCR4 activity. © 2019 Wiley Periodicals, Inc.


Subject(s)
Models, Chemical , Proteins/chemistry , Support Vector Machine , Amino Acid Sequence , Computational Biology , Databases, Protein , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...