Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645894

ABSTRACT

Despite the success of fructose as a low-cost food additive, recent epidemiological evidence suggests that high fructose consumption by pregnant mothers or during adolescence is associated with disrupted neurodevelopment 1-7 . An essential step in appropriate mammalian neurodevelopment is the synaptic pruning and elimination of newly-formed neurons by microglia, the central nervous system's (CNS) resident professional phagocyte 8-10 . Whether early life high fructose consumption affects microglia function and if this directly impacts neurodevelopment remains unknown. Here, we show that both offspring born to dams fed a high fructose diet and neonates exposed to high fructose exhibit decreased microglial density, increased uncleared apoptotic cells, and decreased synaptic pruning in vivo . Importantly, deletion of the high affinity fructose transporter SLC2A5 (GLUT5) in neonates completely reversed microglia dysfunction, suggesting that high fructose directly affects neonatal development. Mechanistically, we found that high fructose treatment of both mouse and human microglia suppresses synaptic pruning and phagocytosis capacity which is fully reversed in GLUT5-deficient microglia. Using a combination of in vivo and in vitro nuclear magnetic resonance- and mass spectrometry-based fructose tracing, we found that high fructose drives significant GLUT5-dependent fructose uptake and catabolism, rewiring microglia metabolism towards a hypo-phagocytic state. Importantly, mice exposed to high fructose as neonates exhibited cognitive defects and developed anxiety-like behavior which were rescued in GLUT5-deficient animals. Our findings provide a mechanistic explanation for the epidemiological observation that early life high fructose exposure is associated with increased prevalence of adolescent anxiety disorders.

2.
Cancer Immunol Res ; 11(9): 1253-1265, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37379366

ABSTRACT

Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.


Subject(s)
Immunotherapy, Adoptive , Melanoma , Mice , Animals , Humans , T-Lymphocytes, Cytotoxic , Genetic Engineering , Receptors, Antigen, T-Cell/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...