Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Vet Entomol ; 35(3): 361-370, 2021 09.
Article in English | MEDLINE | ID: mdl-33377553

ABSTRACT

Aedes mosquitoes (Diptera: Culicidae), principle vectors of several arboviruses, typically lay eggs in man-made water-filled containers located near human dwellings. Given the widespread emergence of insecticide resistance, stable and biofriendly alternatives for mosquito larviciding are needed. Laboratory studies have demonstrated that inactivated yeast interfering RNA tablets targeting key larval developmental genes can be used to facilitate effective larvicidal activity while also promoting selective gravid female oviposition behaviour. Here we examined the efficacy of transferring this technology toward development of lure-and-kill ovitraps targeting Aedes aegypti (L.) and Aedes albopictus (Skuse) female mosquitoes. Insectary, simulated field and semi-field experiments demonstrated that two mosquito-specific yeast interfering RNA pesticides induce high levels of mortality among larvae of both species in treated large volume containers. Small-scale field trials conducted in Trinidad, West Indies demonstrated that large volume ovitrap containers baited with inactivated yeast tablets lure significantly more gravid females than traps containing only water and were highly attractive to both A. aegypti and A. albopictus females. These studies indicate that development of biorational yeast interfering RNA-baited ovitraps may represent a new tool for control of Aedes mosquitoes, including deployment in existing lure-and-kill ovitrap technologies or traditional container larviciding programs.


Subject(s)
Aedes , Aedes/genetics , Animals , Female , Mosquito Vectors , Oviposition , RNA , Saccharomyces cerevisiae/genetics
2.
Am J Epidemiol ; 182(3): 255-62, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25995288

ABSTRACT

Human immunodeficiency virus (HIV) transmission models that include variability in sexual behavior over time have shown increased incidence, prevalence, and acute-state transmission rates for a given population risk profile. This raises the question of whether dynamic variation in individual sexual behavior is a real phenomenon that can be observed and measured. To study this dynamic variation, we developed a model incorporating heterogeneity in both between-person and within-person sexual contact patterns. Using novel methodology that we call iterated filtering for longitudinal data, we fitted this model by maximum likelihood to longitudinal survey data from the Centers for Disease Control and Prevention's Collaborative HIV Seroincidence Study (1992-1995). We found evidence for individual heterogeneity in sexual behavior over time. We simulated an epidemic process and found that inclusion of empirically measured levels of dynamic variation in individual-level sexual behavior brought the theoretical predictions of HIV incidence into closer alignment with reality given the measured per-act probabilities of transmission. The methods developed here provide a framework for quantifying variation in sexual behaviors that helps in understanding the HIV epidemic among gay men.


Subject(s)
Homosexuality, Male/statistics & numerical data , Models, Statistical , Sexual Behavior/statistics & numerical data , Disease Outbreaks/statistics & numerical data , HIV Infections/epidemiology , HIV Infections/transmission , HIV Seropositivity/epidemiology , Humans , Incidence , Likelihood Functions , Longitudinal Studies , Male , Markov Chains , Monte Carlo Method , Prevalence , Risk Assessment , Risk-Taking , Sexual Partners , Stochastic Processes , United States/epidemiology
3.
Math Model Nat Phenom ; 9(2): 121-135, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-27087760

ABSTRACT

The basic reproduction number, R0, is often defined as the average number of infections generated by a newly infected individual in a fully susceptible population. The interpretation, meaning, and derivation of R0 are controversial. However, in the context of mean field models, R0 demarcates the epidemic threshold below which the infected population approaches zero in the limit of time. In this manner, R0 has been proposed as a method for understanding the relative impact of public health interventions with respect to disease eliminations from a theoretical perspective. The use of R0 is made more complex by both the strong dependency of R0 on the model form and the stochastic nature of transmission. A common assumption in models of HIV transmission that have closed form expressions for R0 is that a single individual's behavior is constant over time. In this paper we derive expressions for both R0 and probability of an epidemic in a finite population under the assumption that people periodically change their sexual behavior over time. We illustrate the use of generating functions as a general framework to model the effects of potentially complex assumptions on the number of transmissions generated by a newly infected person in a susceptible population. We find that the relationship between the probability of an epidemic and R0 is not straightforward, but, that as the rate of change in sexual behavior increases both R0 and the probability of an epidemic also decrease.

SELECTION OF CITATIONS
SEARCH DETAIL
...