Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36981313

ABSTRACT

Gears are reliable and robust elements that are found in any power transmission system. However, gears are prone to present incipient faults, such as wear, since they are constantly subjected to contact forces. Due to gears playing a key role in many industrial processes, it is important to develop condition monitoring strategies that ensure the proper functioning of the related power transmission system and the overall components. In this regard, the data on entropy provide relevant information that allow us to identify and quantify the effect of different wear levels in gears. Therefore, in this work, we proposed the use of seven entropy-related features to perform the identification of different wear severities in a gearbox. The novelty of this proposal lies in the use of the entropy features to carry out a high-performance characterization of the available vibration signals that are acquired from experimental tests. The novelty of this proposal lies in the fusion of three different techniques: entropy features, linear discriminant analysis, and artificial neural networks to obtain a machine learning approach for improving the detection of different wear severities in gears compared to other reported methodologies. This situation is achieved due to the high-performance characterization of the available vibration signals that are acquired from experimental tests. Additionally, the entropy features are subjected to a feature space transformation by means of linear discriminant analysis to obtain a 2D representation and, finally, the set of features extracted by linear discriminant analysis are used as inputs of a neural network-based classifier to determine the severity of wear that is present in the gears. The proposed methodology is validated and compared with a conventional statistical approach to show the improvement in the classification.

2.
Sensors (Basel) ; 21(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198887

ABSTRACT

The study of power quality (PQ) has gained relevance over the years due to the increase in non-linear loads connected to the grid. Therefore, it is important to study the propagation of power quality disturbances (PQDs) to determine the propagation points in the grid, and their source of generation. Some papers in the state of the art perform the analysis of punctual measurements of a limited number of PQDs, some of them using high-cost commercial equipment. The proposed method is based upon a developed proprietary system, composed of a data logger FPGA with GPS, that allows the performance of synchronized measurements merged with the full parameterized PQD model, allowing the detection and tracking of disturbances propagating through the grid using wavelet transform (WT), fast Fourier transform (FFT), Hilbert-Huang transform (HHT), genetic algorithms (GAs), and particle swarm optimization (PSO). Measurements have been performed in an industrial installation, detecting the propagation of three PQDs: impulsive transients propagated at two locations in the grid, voltage fluctuation, and harmonic content propagated to all the locations. The results obtained show that the low-cost system and the developed methodology allow the detection of several PQDs, and track their propagation within a grid with 100% accuracy.


Subject(s)
Algorithms , Wavelet Analysis , Fourier Analysis
3.
Sensors (Basel) ; 14(10): 18650-69, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25302811

ABSTRACT

Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.


Subject(s)
Droughts , Solanum lycopersicum/growth & development , Stress, Physiological , Crops, Agricultural , Solanum lycopersicum/physiology , Soil , Wavelet Analysis
4.
Sensors (Basel) ; 12(1): 784-805, 2012.
Article in English | MEDLINE | ID: mdl-22368496

ABSTRACT

Plant responses to physiological function disorders are called symptoms and they are caused principally by pathogens and nutritional deficiencies. Plant symptoms are commonly used as indicators of the health and nutrition status of plants. Nowadays, the most popular method to quantify plant symptoms is based on visual estimations, consisting on evaluations that raters give based on their observation of plant symptoms; however, this method is inaccurate and imprecise because of its obvious subjectivity. Computational Vision has been employed in plant symptom quantification because of its accuracy and precision. Nevertheless, the systems developed so far lack in-situ, real-time and multi-symptom analysis. There exist methods to obtain information about the health and nutritional status of plants based on reflectance and chlorophyll fluorescence, but they use expensive equipment and are frequently destructive. Therefore, systems able of quantifying plant symptoms overcoming the aforementioned disadvantages that can serve as indicators of health and nutrition in plants are desirable. This paper reports an FPGA-based smart sensor able to perform non-destructive, real-time and in-situ analysis of leaf images to quantify multiple symptoms presented by diseased and malnourished plants; this system can serve as indicator of the health and nutrition in plants. The effectiveness of the proposed smart-sensor was successfully tested by analyzing diseased and malnourished plants.


Subject(s)
Biosensing Techniques/instrumentation , Plant Diseases , Algorithms , Capsicum/physiology , Cucurbita/physiology , Image Processing, Computer-Assisted , Phaseolus/physiology , Pigmentation/physiology , Plant Leaves/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...