Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(1): 162-172, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29182855

ABSTRACT

Insight into the mechanisms underlying bacterial adhesion is critical to the formulation of membrane biofouling control strategies. Using AFM-based single-cell force spectroscopy, we investigated the interaction between Pseudomonas fluorescens, a biofilm-forming bacterium, and polysulfone (PSF) ultrafiltration (UF) membranes to unravel the mechanisms underlying early stage membrane biofouling. We show that hydrophilic polydopamine (PDA) coatings decrease bacterial adhesion forces at short bacterium-membrane contact times. Further, we find that adhesion forces are weakened by the presence of natural organic matter (NOM) conditioning films, owing to the hydrophilicity of NOM. Investigation of the effect of adhesion contact time revealed that PDA coatings are less effective at preventing bioadhesion when the contact time is prolonged to 2-5 s, or when the membranes are exposed to bacterial suspensions under stirring. These results therefore challenge the notion that simple hydrophilic surface coatings are effective as a biofouling control strategy. Finally, we present evidence that adhesion to the UF membrane surface is mediated by cell-surface macromolecules (likely to be outer membrane proteins and pili) which, upon contacting the membrane, undergo surface-induced unfolding.


Subject(s)
Biofouling , Ultrafiltration , Bacterial Adhesion , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial
2.
J Phys Chem B ; 121(41): 9666-9675, 2017 10 19.
Article in English | MEDLINE | ID: mdl-28938070

ABSTRACT

Water present in confining geometries plays key roles in many systems of scientific and technological relevance. Prominent examples are living cells and nanofluidic devices. Despite its importance, a complete understanding of the dynamics of water in nanoscale confinement remains elusive. In this work, we use molecular dynamics (MD) simulation to investigate the diffusive dynamics of water monolayers confined in chemically heterogeneous silica slit pores. The effect of chemical heterogeneity is systematically investigated through the fraction fSiOH of randomly distributed surface sites that possess hydroxyl functional groups. Partial hydroxylation results in heterogeneous surfaces comprising nanoscale hydrophobic and hydrophilic regions. We find that the in-plane diffusivity of water increases monotonically with fSiOH; at low surface hydroxylation (fSiOH ≤ 50%), slow water dynamics arise due to the formation of icelike structures in the hydrophobic regions, while at fSiOH ≥ 75%, surface-water H-bonds in the hydrophilic regions result in faster dynamics. We show that surface patterning with ordered hydrophobic and hydrophilic "stripes" can be used to induce one-dimensional diffusion, with water diffusing through the slit pore preferentially along the direction of the hydrophilic surface patterns.

3.
Environ Sci Technol ; 49(3): 1436-44, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25564877

ABSTRACT

In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes.


Subject(s)
Membranes, Artificial , Dimethylformamide/chemistry , Nylons/chemistry , Osmosis , Pyrrolidinones/chemistry , Solvents/chemistry , Water/chemistry
4.
Environ Sci Technol ; 47(21): 12219-28, 2013.
Article in English | MEDLINE | ID: mdl-24066902

ABSTRACT

Forward osmosis (FO) is an emerging membrane-based water separation process with potential applications in a host of environmental and industrial processes. Nevertheless, membrane fouling remains a technical obstacle affecting this technology, increasing operating costs and decreasing membrane life. This work presents the first fabrication of an antifouling thin-film composite (TFC) FO membrane by an in situ technique without postfabrication treatment. The membrane was fabricated and modified in situ, grafting Jeffamine, an amine-terminated poly(ethylene glycol) derivative, to dangling acyl chloride surface groups on the nascent polyamide active layer. Surface characterization by contact angle, Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), zeta potential, atomic force microscopy (AFM), and fluorescence microscopy, confirms the presence of Jeffamine on the membrane surface. We demonstrate the improved fouling resistance of the in situ modified membranes through accelerated dynamic fouling FO experiments using a synthetic wastewater feed solution at high concentration (250 mg/L) of alginate, a model macromolecule for the hydrophilic fraction of wastewater effluent organic matter. Our results show a significantly lower flux decline for the in situ modified membranes compared to pristine polyamide (14.3 ± 2.7% vs 2.8 ± 1.4%, respectively). AFM adhesion force measurements between the membrane and a carboxylate-modified latex particle, a surrogate for the organic (alginate) foulant, show weaker foulant-membrane interactions, further confirming the enhanced fouling resistance of the in situ modified membranes.


Subject(s)
Biofouling , Membranes, Artificial , Osmosis , Alginates/chemistry , Colloids/chemistry , Environment , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Nylons/chemistry , Solutions , Surface Properties
5.
Environ Sci Technol ; 47(17): 9569-83, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23885720

ABSTRACT

In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.


Subject(s)
Extraction and Processing Industry , Waste Disposal, Fluid/methods , Water Pollution, Chemical/prevention & control , Water Purification/methods , Conservation of Natural Resources/methods , Distillation/instrumentation , Distillation/methods , Osmosis , Salinity , Technology , United States , Waste Disposal, Fluid/instrumentation , Water Purification/instrumentation
6.
J Phys Chem B ; 116(33): 9963-70, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22877080

ABSTRACT

We investigate the thermal stability of helical hydrophobic oligomers using a three-dimensional, water-explicit lattice model and the Wang-Landau Monte Carlo method. The degree of oligomer helicity is controlled by the parameter ε(mm) < 0, which mimics monomer-monomer hydrogen bond interactions leading to the formation of helical turns in atomistic proteins. We vary |ε(mm)| between 0 and 4.5 kcal/mol and therefore investigate systems ranging from flexible homopolymers (i.e., those with no secondary structure) to helical oligomers that are stable over a broad range of temperatures. We find that systems with |ε(mm)| ≤ 2.0 kcal/mol exhibit a broad thermal unfolding transition at high temperature, leading to an ensemble of random coils. In contrast, the structure of conformations involved in a second, low-temperature, transition is strongly dependent on |ε(mm)|. Weakly helical oligomers are observed when |ε(mm)| ≤ 1.0 kcal/mol and exhibit a low-temperature, cold-unfolding-like transition to an ensemble of strongly water-penetrated globular conformations. For higher |ε(mm)| (1.7 kcal/mol ≤ |ε(mm)| ≤ 2.0 kcal/mol), cold unfolding is suppressed, and the low-temperature conformational transition becomes a "crystallization", in which a "molten" helix is transformed into a defect-free helix. The molten helix preserves ≥50% of the helical contacts observed in the "crystal" at a lower temperature. When |ε(mm)| = 4.5 kcal/mol, we find that conformational transitions are largely suppressed within the range of temperatures investigated.


Subject(s)
Molecular Dynamics Simulation , Polymers/chemistry , Temperature , Water/chemistry , Algorithms , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Monte Carlo Method
7.
J Phys Chem B ; 116(31): 9540-8, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22823886

ABSTRACT

We investigate the thermodynamics of hydrophobic oligomer collapse using a water-explicit, three-dimensional lattice model. The model captures several aspects of protein thermodynamics, including the emergence of cold- and thermal-unfolding, as well as unfolding at high solvent density (a phenomenon akin to pressure-induced denaturation). We show that over a range of conditions spanning a ≈14% increase in solvent density, the oligomer transforms into a compact, strongly water-penetrated conformation at low temperature. This contrasts with thermal unfolding at high temperature, where the system "denatures" into an extended random coil conformation. We report a phase diagram for hydrophobic collapse that correctly captures qualitative aspects of cold and thermal unfolding at low to intermediate solvent densities.


Subject(s)
Proteins/chemistry , Water/chemistry , Computer Simulation , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Models, Molecular , Phase Transition , Protein Denaturation , Protein Folding , Thermodynamics
8.
J Phys Chem B ; 113(23): 7973-6, 2009 Jun 11.
Article in English | MEDLINE | ID: mdl-19449830

ABSTRACT

We use molecular dynamics simulations to study the influence of confinement on the dynamics of a nanoscopic water film at T = 300 K and rho = 1.0 g cm(-3). We consider two infinite hydrophilic (beta-cristobalite) silica surfaces separated by distances between 0.6 and 5.0 nm. The width of the region characterized by surface-dominated slowing down of water rotational dynamics is approximately 0.5 nm, while the corresponding width for translational dynamics is approximately 1.0 nm. The different extent of perturbation undergone by the in-plane dynamic properties is evidence of rotational-translational decoupling. The local in-plane rotational relaxation time and translational diffusion coefficient collapse onto confinement-independent "master" profiles as long as the separation d >or= 1.0 nm. Long-time tails in the perpendicular component of the dipole moment autocorrelation function are indicative of anisotropic behavior in the rotational relaxation.


Subject(s)
Nanotechnology , Surface Properties
9.
J Phys Chem B ; 113(5): 1438-46, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19143545

ABSTRACT

We present a molecular dynamics simulation study of the structure and dynamics of water confined between silica surfaces using beta-cristobalite as a model template. We scale the surface Coulombic charges by means of a dimensionless number, k, ranging from 0 to 1, and thereby we can model systems ranging from hydrophobic apolar to hydrophilic, respectively. Both rotational and translational dynamics exhibit a nonmonotonic dependence on k characterized by a maximum in the in-plane diffusion coefficient, D||, at values between 0.6 and 0.8, and a minimum in the rotational relaxation time, tauR, at k=0.6. The slow dynamics observed in the proximity of the hydrophobic apolar surface are a consequence of beta-cristobalite templating an ice-like water layer. The fully hydrophilic surfaces (k=1.0), on the other hand, result in slow interfacial dynamics due to the presence of dense but disordered water that forms strong hydrogen bonds with surface silanol groups. Confinement also induces decoupling between translational and rotational dynamics, as evidenced by the fact that tauR attains values similar to that of the bulk, while D|| is always lower than in the bulk. The decoupling is characterized by a more drastic reduction in the translational dynamics of water compared to rotational relaxation.

SELECTION OF CITATIONS
SEARCH DETAIL
...