Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 143(45): 19067-19077, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34738797

ABSTRACT

Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.

3.
ACS Macro Lett ; 10(1): 90-97, 2021 01 19.
Article in English | MEDLINE | ID: mdl-35548981

ABSTRACT

Polymer composition and topology of surface-grafted polyacids determine the amplitude of their pH-induced swelling transition. The intrinsic steric constraints characterizing cyclic poly(2-carboxypropyl-2-oxazoline) (c-PCPOXA) and poly(2-carboxyethyl-2-oxazoline) (c-PCEOXA) forming brushes on Au surfaces induce an enhancement in repulsive interactions between charged polymer segments upon deprotonation, leading to an amplified expansion and a significant increment in swelling with respect to their linear analogues of similar molar mass. On the other hand, it is the composition of polyacid grafts that governs their hydration in both undissociated and ionized forms, determining the degree of swelling during their pH-induced transition.


Subject(s)
Polymers , Hydrogen-Ion Concentration , Molecular Weight , Polyelectrolytes
4.
ACS Macro Lett ; 10(9): 1099-1106, 2021 09 21.
Article in English | MEDLINE | ID: mdl-35549080

ABSTRACT

Cu0-mediated surface-initiated ATRP (Cu0 SI-ATRP) emerges as a versatile, oxygen-tolerant process to functionalize three-dimensional (3D), microporous supports forming single and multiple polymer-brush gradients with a fully tunable composition. When polymerization mixtures are dispensed on a Cu0-coated plate, this acts as oxygen scavenger and source of active catalyst. In the presence of an ATRP initiator-bearing microporous elastomer placed in contact with the metallic plate, the reaction solution infiltrates by capillarity through the support, simultaneously triggering the controlled growth of polymer brushes. The polymer grafting process proceeds with kinetics that are determined by the progressive infiltration of the reaction solution within the microporous support and by the continuous diffusion of catalyst regenerated at the Cu0 surface. The combination of these effects enables the accessible generation of 3D polymer-brush gradients extending across the microporous scaffolds used as supports, finally providing materials with a continuous variation of interfacial composition and properties.


Subject(s)
Polymers , Proteins , Elastomers , Oxygen , Polymerization
5.
Macromol Rapid Commun ; 42(7): e2000658, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33326133

ABSTRACT

Cyclic macromolecules do not feature chain ends and are characterized by a higher effective intramolecular repulsion between polymer segments, leading to a higher excluded-volume effect and greater hydration with respect to their linear counterparts. As a result of these unique properties, hydrogels composed of cross-linked cyclic polymers feature enhanced mechanical strength while simultaneously incorporating more solvent with respect to networks formed from their linear analogues with identical molar mass and chemical composition. The translation of topology effects by cyclic polymers into the properties of polymer networks provides hydrogels that ideally do not include defects, such as dangling chain ends, and display unprecedented physicochemical characteristics.


Subject(s)
Hydrogels , Oxazoles , Molecular Weight , Polymers
6.
Redox Biol ; 37: 101705, 2020 10.
Article in English | MEDLINE | ID: mdl-33007503

ABSTRACT

The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool.


Subject(s)
Kv1.3 Potassium Channel , Mitochondria , Animals , Cell Line, Tumor , Dissection , Humans , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/genetics , Mice, Inbred C57BL , Reactive Oxygen Species
7.
ACS Nano ; 14(8): 10054-10067, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32628438

ABSTRACT

The physicochemical properties of cyclic polymer adsorbates are significantly influenced by the steric and conformational constraints introduced during their cyclization. These translate into a marked difference in interfacial properties between cyclic polymers and their linear counterparts when they are grafted onto surfaces yielding nanoassemblies or polymer brushes. This difference is particularly clear in the case of cyclic polymer brushes that are designed to chemically interact with the surrounding environment, for instance, by associating with biological components present in the medium, or, alternatively, through a response to a chemical stimulus by a significant change in their properties. The intrinsic architecture characterizing cyclic poly(2-oxazoline)-based polyacid brushes leads to a broad variation in swelling and nanomechanical properties in response to pH change, in comparison with their linear analogues of identical composition and molecular weight. In addition, cyclic glycopolymer brushes derived from polyacids reveal an enhanced exposure of galactose units at the surface, due to their expanded topology, and thus display an increased lectin-binding ability with respect to their linear counterparts. This combination of amplified responsiveness and augmented protein-binding capacity renders cyclic brushes invaluable building blocks for the design of "smart" materials and functional biointerfaces.


Subject(s)
Polymers , Molecular Conformation , Molecular Weight , Protein Binding , Surface Properties
8.
J Am Chem Soc ; 142(6): 3158-3164, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31967475

ABSTRACT

The use of zerovalent iron (Fe0)-coated plates, which act both as a source of catalyst and as a reducing agent during surface-initiated atom transfer radical polymerization (SI-ATRP), enables the controlled growth of a wide range of polymer brushes under ambient conditions utilizing either organic or aqueous reaction media. Thanks to its cytocompatibility, Fe0 SI-ATRP can be applied within cell cultures, providing a tool that can broadly and dynamically modify the substrate's affinity toward cells, without influencing their viability. Upon systematically assessing the application of Fe-based catalytic systems in the controlled grafting of polymers, Fe0 SI-ATRP emerges as an extremely versatile technique that could be applied to tune the physicochemical properties of a cell's microenvironments on biomaterials or within tissue engineering constructs.


Subject(s)
Iron/chemistry , Oxygen/chemistry , Polymerization , Polymers/chemistry , Animals , Biocompatible Materials , Cells, Cultured , Mammals
9.
ACS Macro Lett ; 9(7): 1024-1033, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-35648599

ABSTRACT

Polymer-topology effects can alter technologically relevant properties when cyclic macromolecules are applied within diverse materials formulations. These include coatings, polymer networks, or nanostructures for delivering therapeutics. While substituting linear building blocks with cyclic analogues in commonly studied materials is itself of fundamental interest, an even more fascinating observation has been that the introduction of physical or chemical boundaries (e.g., a grafting surface or cross-links) can amplify the topology-related effects observed when employing cyclic polymer-based precursors for assembling multidimensional objects. Hence, the application of cyclic polymers has enabled the fabrication of coatings with enhanced biorepellency and superior lubricity, broadened the tuning potential for mechanical properties of polymer networks, increased the thermodynamic stability, and altered the capability of loading and releasing drugs within polymeric micelles.

10.
Langmuir ; 35(42): 13521-13535, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31532689

ABSTRACT

The modification of a variety of biomaterials and medical devices often encompasses the generation of biopassive and lubricious layers on their exposed surfaces. This is valid when the synthetic supports are required to integrate within physiological media without altering their interfacial composition and when the minimization of shear stress prevents or reduces damage to the surrounding environment. In many of these cases, hydrophilic polymer brushes assembled from surface-interacting polymer adsorbates or directly grown by surface-initiated polymerizations (SIP) are chosen. Although growing efforts by polymer chemists have been focusing on varying the composition of polymer brushes in order to attain increasingly bioinert and lubricious surfaces, the precise modulation of polymer architecture has simultaneously enabled us to substantially broaden the tuning potential for the above-mentioned properties. This feature article concentrates on reviewing this latter strategy, comparatively analyzing how polymer brush parameters such as molecular weight and grafting density, the application of block copolymers, the introduction of branching and cross-links, or the variation of polymer topology beyond the simple, linear chains determine highly technologically relevant properties, such as biopassivity and lubrication.

11.
Front Oncol ; 8: 122, 2018.
Article in English | MEDLINE | ID: mdl-29740538

ABSTRACT

Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific "homing" properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a "targeting pro-drug." Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic) ring system and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them-a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system-proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.

12.
Biomacromolecules ; 19(1): 103-111, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29216713

ABSTRACT

Functional block copolymers based on poly(2-oxazoline)s are versatile building blocks for the fabrication of dual-drug delivery nanoparticles (NPs) for anticancer chemotherapy. Core-shell NPs are fabricated from diblock copolymers featuring a long and hydrophilic poly(2-methyl-2-oxazoline) (PMOXA) block coupled to a relatively short and functionalizable poly(2-methylsuccinate-2-oxazoline) (PMestOXA) segment. The PMOXA block stabilizes the NP dispersions, whereas the PMestOXA segment is used to conjugate pterostilbene, a natural bioactive phenolic compound that is used as lipophilic model-drug and constitutes the hydrophobic core of the designed NPs. Subsequent loading of the NPs with clofazimine (CFZ), an inhibitor of the multidrug resistance pumps typically expressed in a large variety of cancer cells, provides an additional function to their formulation. Optimization of the copolymer composition allows the design of polymer scaffolds showing low toxicity and capable of assembling into highly stable NPs dispersions at physiologically relevant pH. In addition, the incorporation of CFZ increases the stability of the NPs and stimulates their internalization by RAW 264.7 cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Oxazoles/chemistry , Stilbenes/chemistry , Animals , Antineoplastic Agents/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Clofazimine/administration & dosage , Clofazimine/pharmacology , Drug Resistance, Multiple/drug effects , Hydrophobic and Hydrophilic Interactions , Mice , Nanoparticles/administration & dosage , Proton Magnetic Resonance Spectroscopy , RAW 264.7 Cells , Spectrophotometry, Ultraviolet
13.
Front Oncol ; 7: 239, 2017.
Article in English | MEDLINE | ID: mdl-29034212

ABSTRACT

Previous results link the mitochondrial potassium channel Kv1.3 (mitoKv1.3) to the regulation of apoptosis. By synthesizing new, mitochondria-targeted derivatives (PAPTP and PCARBTP) of PAP-1, a specific membrane-permeant Kv1.3 inhibitor, we have recently provided evidence that both drugs acting on mitoKv1.3 are able to induce apoptosis and reduce tumor growth in vivo without affecting healthy tissues and cells. In the present article, by exploiting these new drugs, we addressed the question whether mitoKv1.3 contributes to the regulation of cell proliferation as well. When used at low concentrations, which do not compromise cell survival, both drugs slightly increased the percentage of cells in S phase while decreased the population at G0/G1 stage of cells from two different pancreatic ductal adenocarcinoma lines. Our data suggest that the observed modulation is related to ROS levels within the cells, opening the way to link mitochondrial ion channel function to downstream, ROS-related signaling events that might be important for cell cycle progression.

14.
Ann N Y Acad Sci ; 1403(1): 27-37, 2017 09.
Article in English | MEDLINE | ID: mdl-28675763

ABSTRACT

Prodrugs of resveratrol are under development. Among the long-term goals, still largely elusive, are (1) modulating physical properties (e.g., water-soluble derivatives bearing polyethylene glycol chains), (2) changing distribution in the body (e.g., galactosyl derivatives restricted to the intestinal lumen), (3) increasing absorption from the gastrointestinal tract (e.g., derivatives imitating the natural substrates of endogenous transporters), and (4) hindering phase II metabolism (e.g., temporarily blocking the hydroxyls), all contributing to (5) increasing bioavailability. The chemical bonds that have been tested for functionalization include carboxyester, acetal, and carbamate groups. A second approach, which can be combined with the first, seeks to reinforce or modify the biochemical activities of resveratrol by concentrating the compound at specific subcellular sites. An example is provided by mitochondria-targeted derivatives. These proved to be pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumor cells when supplied in the low micromolar range. This suggests the possibility of anticancer applications.


Subject(s)
Oxidative Stress/drug effects , Prodrugs/pharmacology , Reactive Oxygen Species/metabolism , Stilbenes/pharmacology , Animals , Humans , Mitochondria/metabolism , Resveratrol
15.
Cancer Cell ; 31(4): 516-531.e10, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28399409

ABSTRACT

The potassium channel Kv1.3 is highly expressed in the mitochondria of various cancerous cells. Here we show that direct inhibition of Kv1.3 using two mitochondria-targeted inhibitors alters mitochondrial function and leads to reactive oxygen species (ROS)-mediated death of even chemoresistant cells independently of p53 status. These inhibitors killed 98% of ex vivo primary chronic B-lymphocytic leukemia tumor cells while sparing healthy B cells. In orthotopic mouse models of melanoma and pancreatic ductal adenocarcinoma, the compounds reduced tumor size by more than 90% and 60%, respectively, while sparing immune and cardiac functions. Our work provides direct evidence that specific pharmacological targeting of a mitochondrial potassium channel can lead to ROS-mediated selective apoptosis of cancer cells in vivo, without causing significant side effects.


Subject(s)
Antineoplastic Agents/pharmacology , Kv1.3 Potassium Channel/antagonists & inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Potassium Channel Blockers/pharmacology , Aged , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Case-Control Studies , Coumarins/pharmacology , Drug Stability , Female , Humans , Kv1.3 Potassium Channel/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Melanoma/drug therapy , Melanoma/pathology , Mice, Inbred C57BL , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Targeted Therapy , Organophosphorus Compounds/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/chemistry
16.
Eur J Pharm Biopharm ; 115: 149-158, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28254379

ABSTRACT

The biomedical effects of the natural phenol pterostilbene are of great interest but its bioavailability is negatively affected by the phenolic group in position 4' which is an ideal target for the conjugative enzymes of phase II metabolism. We report the synthesis and characterization of prodrugs in which the hydroxyl moiety is reversibly protected as a carbamate ester linked to the N-terminus of a natural amino acid. Prodrugs comprising amino acids with hydrophobic side chains were readily absorbed after intragastric administration to rats. The Area Under the Curve for pterostilbene in blood was optimal when prodrugs with isoleucine or ß-alanine were used. The prodrug incorporating isoleucine was used for further studies to map distribution into major organs. When compared to pterostilbene itself, administration of the isoleucine prodrug afforded increased absorption, reduced metabolism and higher concentrations of pterostilbene, sustained for several hours, in most of the organs examined. Experiments using Caco-2 cells as an in vitro model for human intestinal absorption suggest that the prodrug could have promising absorption profiles also in humans; its uptake is partly due to passive diffusion, and partly mediated by H+-dependent transporters expressed on the apical membrane of enterocytes, such as PepT1 and OATP.


Subject(s)
Amino Acids/chemistry , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Stilbenes/chemistry , Stilbenes/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Biological Transport/drug effects , Caco-2 Cells , Carbamates/chemistry , Cell Line, Tumor , Esters/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Intestinal Absorption/drug effects , Male , Rats , Rats, Wistar , Tissue Distribution/drug effects
18.
Angew Chem Int Ed Engl ; 55(50): 15583-15588, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27775203

ABSTRACT

The cyclic polymer topology strongly alters the interfacial, physico-chemical properties of polymer brushes, when compared to the linear counterparts. In this study, we especially concentrated on poly-2-ethyl-2-oxazoline (PEOXA) cyclic and linear grafts assembled on titanium oxide surfaces by the "grafting-to" technique. The smaller hydrodynamic radius of ring PEOXAs favors the formation of denser brushes with respect to linear analogs. Denser and more compact cyclic brushes generate a steric barrier that surpasses the typical entropic shield by a linear brush. This phenomenon, translates into an improved resistance towards biological contamination from different protein mixtures. Moreover, the enhancement of steric stabilization coupled to the intrinsic absence of chain ends by cyclic brushes, produce surfaces displaying a super-lubricating character when they are sheared against each other. All these topological effects pave the way for the application of cyclic brushes for surface functionalization, enabling the modulation of physico-chemical properties that could be just marginally tuned by applying linear grafts.

19.
Anticancer Agents Med Chem ; 14(10): 1332-42, 2014.
Article in English | MEDLINE | ID: mdl-24975033

ABSTRACT

Plant polyphenols exhibit potentially useful effects in a wide variety of pathophysiological settings. They interact with proteins such as signalling kinases, transcription factors and ion channels, and modulate redox processes, such as those taking place in mitochondria. Biomedical applications of these natural compounds are however severely hindered by their low bioavailability, rapid metabolism, and often by unfavourable physico-chemical properties, e.g. a generally low water solubility. Derivatives are under development with the aim of improving their bioavailability and/or bioefficacy. Various strategies can be adopted. An increase in circulating blood levels of non-metabolized natural compound may be attainable through prodrugs. In the ideal prodrug, phenolic hydroxyls are protected by capping groups which a) help or at least do not hinder permeation of epithelia; b) prevent conjugative modifications during absorption and first-pass through the liver; c) are eliminated with opportune kinetics to regenerate the parent compound. Moreover, prodrugs may be designed with the goals of modulating physical properties of the parent compound, and/or changing its distribution in the body. A more specific action may be achieved by concentrating the compounds at specific sites of action. An example of the second approach is represented by mitochondria-targeted redox-active polyphenol derivatives, designed to intervene on radical processes in these organelles and as a tool either to protect cells from oxidative insults or to precipitate their death. Mitochondrial targeting can be achieved through conjugation with a triphenylphosphonium lipophilic cation. Quercetin and resveratrol were chosen as model polyphenols for these proof-of-concept studies. Data available at the moment show that both quercetin and resveratrol mitochondria-targeted derivatives are pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumoural cells when supplied in the low µM range; the mechanism of ROS generation appears to differ between the two classes of compounds. These approaches are emerging as promising strategies to obtain new efficient chemopreventive and/or chemotherapeutic drugs based on polyphenols derivatives.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Plants/chemistry , Polyphenols/therapeutic use , Prodrugs/therapeutic use , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Mitochondria/metabolism , Polyphenols/chemistry , Polyphenols/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Quercetin/chemistry , Quercetin/pharmacology , Quercetin/therapeutic use , Reactive Oxygen Species/metabolism , Resveratrol , Solubility , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...