Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 99(6): 983-989, 2023.
Article in English | MEDLINE | ID: mdl-34634981

ABSTRACT

PURPOSE: This manuscript is a scholarly perspective on the crucially important topic of mentoring in STEM and the STEM-intensive health professions (STEM+). Our purpose is to share our understanding of this subject as a means to mitigate the persistent underrepresentation in these fields and to offer our recommendations. MATERIALS & METHODS: This manuscript draws on the literature and our experiences to develop recommendations for improving outcomes for diverse populations of undergraduate students who are pursuing majors in the STEM fields and aspire to careers in the biomedical sciences and/or STEM-intensive health professions. RESULTS: Undergraduate learning communities and mentored research activities promote continued engagement in STEM and also provide a competitive foundation for careers in these fields. CONCLUSIONS: (1) Mentoring must be brought to scale through clearly articulated institutional and disciplinary prioritization of learning communities, with attendant assessment to monitor the impact of creating an environment that supports diverse students from underrepresented backgrounds. (2) Individual faculty members and principal investigators affiliated with academic institutions and stand-alone research facilities can enhance their mentoring role by welcoming underrepresented undergraduates into their laboratories. (3) Faculty members, administrators, and staff members must commit themselves to the success of each student who enrolls in a STEM + program, rather than accepting high rates of failure as inevitable. (4) Increased interactions between first-year students and faculty members through experiences in mentored learning communities that promote authentic engagement and discovery are key to promoting the retention of diverse populations of students who are underrepresented in the STEM + fields. (5) Learning communities can amplify the impact of an individual mentor. (6) Barriers to student success, such as weak preparation from high school courses, must be proactively and effectively addressed.


Subject(s)
Mentoring , Mentors , Humans , Students , Universities , Health Occupations
2.
Disaster Med Public Health Prep ; 13(5-6): 874-879, 2019 12.
Article in English | MEDLINE | ID: mdl-31169107

ABSTRACT

OBJECTIVES: In 2010, South Africa (SA) hosted the Fédération Internationale de Football Association (FIFA) World Cup (soccer). Emergency Medical Services (EMS) used the SA mass gathering medicine (MGM) resource model to predict resource allocation. This study analyzed data from the World Cup and compared them with the resource allocation predicted by the SA mass gathering model. METHODS: Prospectively, data were collected from patient contacts at 9 venues across the Western Cape province of South Africa. Required resources were based on the number of patients seeking basic life support (BLS), intermediate life support (ILS), and advanced life support (ALS). Overall patient presentation rates (PPRs) and transport to hospital rates (TTHRs) were also calculated. RESULTS: BLS services were required for 78.4% (n = 1279) of patients and were consistently overestimated using the SA mass gathering model. ILS services were required for 14.0% (n = 228), and ALS services were required for 3.1% (n = 51) of patients. Both ILS and ALS services, and TTHR were underestimated at smaller venues. CONCLUSIONS: The MGM predictive model overestimated BLS requirements and inconsistently predicted ILS and ALS requirements. MGM resource models, which are heavily based on predicted attendance levels, have inherent limitations, which may be improved by using research-based outcomes.


Subject(s)
Anniversaries and Special Events , Decision Support Techniques , Disaster Planning/methods , Emergency Medical Services/methods , Emergency Medical Services/trends , Humans , Prospective Studies , Soccer/statistics & numerical data , South Africa
3.
Anat Sci Educ ; 5(1): 3-9, 2012.
Article in English | MEDLINE | ID: mdl-22127919

ABSTRACT

The ability to mentally manipulate objects in three dimensions is essential to the practice of many clinical medical specialties. The relationship between this type of visual-spatial ability and performance in preclinical courses such as medical gross anatomy is poorly understood. This study determined if visual-spatial ability is associated with performance on practical examinations, and if students' visual-spatial ability improves during medical gross anatomy. Three hundred and fifty-two first-year medical students completed the Mental Rotations Test (MRT) before the gross anatomy course and 255 at its completion in 2008 and 2009. Hypotheses were tested using logistic regression analysis and Student's t-test. Compared with students in the lowest quartile of the MRT, students who scored in the highest quartile of the MRT were 2.2 [95% confidence interval (CI) 1.2 and 3.8] and 2.1 (95% CI 1.2 and 3.5) times more likely to score greater than 90% on practical examinations and on both practical and written examinations, respectively. MRT scores for males and females increased significantly (P < 0.0001). Measurement of students' pre-existing visual-spatial ability is predictive of performance in medical gross anatomy, and early intervention may be useful for students with low visual-spatial ability on entry to medical school. Participation in medical gross anatomy increases students' visual-spatial ability, although the mechanism for this phenomenon is unknown.


Subject(s)
Anatomy/education , Education, Medical, Undergraduate , Space Perception , Students, Medical/psychology , Visual Perception , Analysis of Variance , Boston , Educational Measurement , Female , Humans , Logistic Models , Male , Odds Ratio , Prospective Studies , Rotation , Schools, Medical
4.
Anat Sci Educ ; 3(2): 56-63, 2010.
Article in English | MEDLINE | ID: mdl-20213692

ABSTRACT

Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with performance in the gross anatomy course and (2) dissection of the CT-scanned cadaver is positively associated with performance on this course. One hundred and seventy-nine first-year medical students enrolled in gross anatomy at Boston University School of Medicine were provided with CT scans of four cadavers, and students were given the opportunity to choose whether or not to use these images. The hypotheses were tested using logistic regression analysis adjusting for student demographic characteristics. Students who used the CT scans were more likely to score greater than 90% as an average practical examination score (odds ratio OR 3.6; 95% CI 1.4, 9.2), final course grade (OR 2.6; 95% CI 1.01, 6.8), and on spatial anatomy examination questions (OR 2.4; 95% CI 1.03, 5.6) than were students who did not use the CT scans. There were no differences in performance between students who dissected the scanned cadavers and those who dissected a different cadaver. These results demonstrate that the use of CT scans in medical gross anatomy is predictive of performance in the course and on questions requiring knowledge of anatomical spatial relationships, but it is not necessary to scan the actual cadaver dissected by each student.


Subject(s)
Anatomy/education , Cadaver , Education, Medical, Undergraduate/methods , Students, Medical , Teaching/methods , Tomography, X-Ray Computed , Whole Body Imaging/methods , Comprehension , Computer-Assisted Instruction , Curriculum , Dissection , Educational Measurement , Female , Humans , Linear Models , Logistic Models , Male , Odds Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...