Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(6): e99600, 2014.
Article in English | MEDLINE | ID: mdl-24927276

ABSTRACT

Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤ 0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤ 10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥ 0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤ 0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented 'eye-origin specific' segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision.


Subject(s)
Neurons/physiology , Vision, Binocular , Visual Cortex/physiology , Animals , Cats , Dominance, Ocular , Female , Male , Photic Stimulation , Spatial Processing
2.
J Neurophysiol ; 106(4): 1688-712, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21715668

ABSTRACT

We have recorded single-neuron activity from cytoarchitectonic area 18 of anesthetized (0.4-0.7% isoflurane in 65% N2O-35% O2 gaseous mixture) domestic cats. Neurons were identified as simple or complex on the basis of the ratios between the phase-variant (F1) component and the mean firing rate (F0) of spike responses to optimized (orientation, direction, spatial and temporal frequencies, size) high-contrast, luminance-modulated, sine-wave drifting gratings (simple: F1/F0 spike-response ratios > 1; complex: F1/F0 spike-response ratios < 1). The predominance (~80%) of simple cells among the neurons recorded from the principal thalamorecipient layers supports the idea that most simple cells in area 18 might constitute a putative early stage in the visual information processing. Apart from the "spike-generating" regions (the classical receptive fields, CRFs), the receptive fields of three-quarters of area 18 neurons contain silent, extraclassical suppressive regions (ECRFs). The spatial extent of summation areas of excitatory responses was negatively correlated with the strength of the ECRF-induced suppression of spike responses. Lowering the stimulus contrast resulted in an expansion of the summation areas of excitatory responses accompanied by a reduction in the strength of the ECRF-induced suppression. The spatial and temporal frequency and orientation tunings of the ECRFs were much broader than those of the CRFs. Hence, the ECRFs of area 18 neurons appear to be largely "inherited" from their dorsal thalamic inputs. In most area 18 cells, costimulation of CRFs and ECRFs resulted in significant increases in F1/F0 spike-response ratios, and thus there was a contextually modulated functional continuum between the simple and complex cells.


Subject(s)
Neurons/physiology , Visual Cortex/physiology , Action Potentials , Animals , Cats , Female , Geniculate Bodies/physiology , Light , Male , Photic Stimulation , Retinal Ganglion Cells/physiology , Visual Pathways/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...