Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 43(2): 169-76, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15820665

ABSTRACT

We have isolated a Cicer arietinum cDNA clone (CaXTH1) encoding a protein that belongs to the family 16 of glycosyl hydrolases and has all the conserved features of xyloglucan endotransglucosylase/hydrolases (XTH) proteins, including the presence of a highly conserved domain (DEIDFEFLG) and four Cys which suggest the potential for forming disulfide bonds. These facts indicate that CaXTH1 encodes a putative XTH. This chickpea protein showed a high level of sequence identity with group 1 XTHs that have xyloglucan endotransglucosylase (XET) activity. CaXTH1 was selected by differential screening of a cDNA library constructed using mRNA from C. arietinum polyethylene glycol (PEG) treated epicotyls, as a clone whose expression decreased when epicotyl growth was inhibited by PEG. CaXTH1 shows an expression pattern that seems to be specific for growing tissue, mostly epicotyls and the growing internodes of adult stems. CaXTH1 mRNA was not detected in any other organs of either seedlings or adult plants. CaXTH1 mRNA was abundant when epicotyls are actively growing; there was almost no expression after PEG-treatment. CaXTH1 was up-regulated by indole acetic acid (IAA) and brassinolides (BR), showing the highest transcript levels after IAA plus BR treatment. In situ hybridization study revealed that CaXTH1 is mainly expressed in epidermal cells, the target of the cell expansion process, and also in vascular tissues. The present results suggest an involvement of the putative XTH encoded by CaXTH1 in the chickpea cell expansion process.


Subject(s)
Cicer/metabolism , Glycosyltransferases/metabolism , Brassinosteroids , Cell Enlargement , Cholestanols/pharmacology , Cicer/drug effects , DNA, Complementary/isolation & purification , Glycosyltransferases/genetics , In Situ Hybridization , Indoleacetic Acids/pharmacology , Molecular Sequence Data , Phylogeny , Plant Growth Regulators/pharmacology , Plant Structures/drug effects , Plant Structures/metabolism , Polyethylene Glycols/pharmacology , Seedlings/drug effects , Seedlings/metabolism , Steroids, Heterocyclic/pharmacology
2.
Plant Cell Physiol ; 44(7): 718-25, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12881499

ABSTRACT

The cDNA clone (CanBGal-3) encoding a cell wall pectin-degrading beta-galactosidase (beta III-Gal) from Cicer arietinum L. cv. Castellana has been identified. The identification was carried out by comparing the deduced amino acid sequences of several isolated chickpea beta-galactosidase clones with the purified beta III-Gal protein sequence. The expression pattern of the gene corresponding to CanBGal-3 was in concordance with the fluctuations of the enzyme beta III-Gal in different seedling organs, being specific to elongating organs such as epicotyls and roots. Transformation of Solanum tuberosum plants with the chickpea CanBGal-3 clone indicated that the beta-galactosidase encoded by this clone is a pectin-degrading enzyme. The authors propose an important role for chickpea beta III-Gal in pectin degradation in cell walls of vegetative organs such as epicotyls and roots. The degradation of galactan carried out by this enzyme may determine structural changes and affect cell wall porosity. It is suggested that the increase in the size of cell wall pores could permit access of other cell wall-modifying enzymes to their substrate.


Subject(s)
Cicer/genetics , Pectins/metabolism , beta-Galactosidase/genetics , Amino Acid Sequence , Blotting, Southern , Cell Wall/metabolism , Cicer/enzymology , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , beta-Galactosidase/metabolism
3.
Physiol Plant ; 114(4): 619-626, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11975737

ABSTRACT

Plant lectins are a group of glycoproteins with the ability to recognize and bind carbohydrate ligands. Seed lectins function as storage and defense proteins, but the specific function of vegetative lectins is uncertain. In this paper we describe the characterization of a clone, CanVLEC, encoding a vegetative lectin from chickpea (Cicer arietinum L. cv. Castellana). The expression of the CanVLEC gene was specific in seedlings, mostly in hooks and elongating epicotyls, and no expression was detected in adult plants. The level of chickpea vegetative lectin transcripts in epicotyls decreased through the epicotyl growth suggesting a relationship to development. Treatment with indoleacetic acid (IAA) and brassinolides (BR), hormones that promoted elongation in chickpea epicotyl, increased the level of CanVLEC mRNA, supporting a relationship to growth. CanVLEC is drastically down regulated by water deficit ruling out its possible involvement in plant response to water stress, unlike other vegetative lectins. CanVLEC protein may be targeted to an extracellular location owing to the presence of a signal peptide.

SELECTION OF CITATIONS
SEARCH DETAIL
...