Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(6): 2475-2486, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38174938

ABSTRACT

Twelve (N^N^N)platinum pyridyl complexes, (N^N^N)Pt(pyF), were synthesised and investigated for their singlet oxygen generation and potential biological activities. They exhibited 1IL and 1MLCT absorption transitions at approximately 325 and 360 nm, identified through TD-DFT calculations. Luminescence was observed only in the L1-derived compounds in solution, with a dual emission with the main contribution of phosphorescence under deaerated conditions. Room temperature phosphorescence was detected in all solid-state cases. Electron-withdrawing substituents at specific positions (R1 and X) and the number of fluorine atoms in R2 were found to enhance the photosensitizing capabilities of these compounds. Biological assessments, including cytotoxicity and photocytotoxicity, were conducted to evaluate their potential as chemotherapeutic agents and photosensitizers. Complexes with chloro substitution in the N^N^N tridentate ligand of the central pyridine ring exhibited promising chemotherapeutic properties. Ancillary pyridine ring substitution became significant under irradiation conditions, with fluoromethylated substituents enhancing cytotoxicity. Complex 2-CF3 was the most efficient singlet oxygen producer and a highly effective photosensitizer. CHF2-substituted complexes also showed improved photosensitizing activity. DNA binding studies indicated moderate interactions with DNA, offering insights into potential biological applications.


Subject(s)
Photosensitizing Agents , Singlet Oxygen , DNA , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Platinum/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology
2.
Inorg Chem ; 63(5): 2821-2832, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38259118

ABSTRACT

Four Pt(II)(N^N^N) compounds featuring DMSO coordination at the fourth position were synthesized. Ligands varied in terms of pyridyl central ring (hydrogen/chlorine substituent) and lateral rings (triazoles with CF3 substitution or tetrazoles). Coordination to pyridine yielded tetra-nitrogen coordinated Pt(II) complexes or Pt-functionalized polymers using commercial 4-pyridyl polyvinyl (PV) or dimethylaminopyridine. Luminescence behaviors exhibited remarkable environmental dependence. While some of the molecular compounds (tetrazole derivatives) in solid state displayed quenched luminescence, all the polymers exhibited 3MMLCT emission around 600 nm. Conversely, monomer emission was evident on poly(methyl methacrylate) or polystyrene matrices. DFT calculations were used to analyze the aggregation of the complexes both at the molecular level and coordinated to the PV polymer and their influence on the HOMO-LUMO gaps.

3.
Inorg Chem ; 62(21): 8101-8111, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37191273

ABSTRACT

Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.

4.
Chem Mater ; 35(3): 1080-1093, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36818591

ABSTRACT

A series of porous metalloporphyrin frameworks prepared from the 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) linker and four metal complexes, M(hfac)2 M = Cu(II), Zn(II), Co(II), and Ni(II) (hfac: 1,1,1,5,5,5-hexafluoroacetylacetonate), were obtained using supercritical CO2 (scCO2) as a solvent. All the materials, named generically as [M-TPyP] n , formed porous metal-organic frameworks (MOFs), with surface areas of ∼450 m2 g-1. All MOFs were formed through the coordination of the metal to the exocyclic pyridine moieties in the porphyrin linker. For Cu(II), Zn(II), and Co(II), incomplete metal coordination of the inner pyrrole ring throughout the structure was observed, giving place to MOFs with substitutional defects and leading to a certain level of disorder and limited crystallinity. These samples, prepared using scCO2, were precipitated as nano- to micrometric powders. Separately, a layering technique from a mixture of organic solvents was used to crystallize high-quality crystals of the Co(II) based MOF, obtained with the formula [{Co(hfac)2}2H2TPyP] n . The crystal structure of this MOF was elucidated by single-crystal synchrotron X-ray diffraction. The Zn(II)-based MOF was selected as a potential photodynamic therapy drug in the SKBR-3 tumoral cell line showing outstanding performance. This MOF resulted to be nontoxic, but after 15 min of irradiation at 630 nm, using either 1 or 5 µM concentration of the product, almost 70% of tumor cells died after 72 h.

5.
Dalton Trans ; 51(45): 17162-17169, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36305238

ABSTRACT

The synthesis and characterization of two dinuclear and five tetranuclear gold(I) complexes bearing the 2,6-bis(diphenylphosphinomethyl)pyridine diphosphane ligand (DPPMPY) are herein reported. The reaction between the dinuclear complexes, DPPMPY(AuCl)2 (1) or DPPMPY(AuBr)2 (2), with 1 or 2 equivalents of Ag salts yielded five tetranuclear gold(I) complexes, DPPMPY2Au4X2 (3-7), differing in the terminal ancillary ligands (X = Cl, Br, acetonitrile) and the counter ions (SbF6- or BF4-). The structures of complexes 1, 2, 3, and 5 were confirmed by single-crystal X-ray diffraction studies. The Au⋯Au distances found in complexes 3 and 5 are in the range of aurophilic interactions and the arrangement of the Au atoms varies from a linear arrangement in complex 3 to a zigzag arrangement in complex 5. The photophysical characterization of the compounds was performed both in solution and in the solid state. Very high emission quantum yields were observed for the acetonitrile complexes 4 and 6 in the solid state. The use of this family of gold(I) complexes as catalysts for lactone synthesis via oxidative heteroarylation of alkenes was investigated and yields up to ca. 65% were obtained. Dicationic halide complexes 3 and 5 showed a slight enhancement of the yield of the catalytic reaction, indicating that there is no influence of the counter ion employed on the reaction outcome. Luminescence techniques have been also used to follow the progress of the catalytic reaction.

6.
Dalton Trans ; 50(23): 8154-8166, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34028483

ABSTRACT

The synthesis of di- and tritopic gold(i) metallaligands of the type [(Au4-py)2(µ2-diphosphane)] (diphosphane = bis(diphenylphosphanyl)isopropane or dppip (1), 1,2-bis(diphenylphosphanyl)ethane or dppe (2), 1,3-bis(diphenylphosphanyl)propane or dppp (3) and 1,4-bis(diphenylphosphanyl)butane or dppb (4)) and [(Au4-py)3(µ3-triphosphane)] (triphosphane = 1,1,1-tris(diphenylphosphanylmethyl)ethane or triphos (5) and 1,3,5-tris(diphenylphosphanyl)benzene or triphosph (6)) from [(AuCl)2(µ2-diphosphane)] or [(AuCl)3(µ3-triphosphane)] and 4-pyridylboronic acid in the presence of Cs2CO3 has been conducted. Interestingly, when [(AuCl)2(µ2-dppm)] (dppm = bis(diphenylphosphanyl)methane) was used as a starting material, the cyclic tetranuclear gold(i) compound [(Au4-py)2(CH)2{µ2-Au(PPh2)2}2] (I) was obtained instead. All the products have been characterized by IR and multinuclear NMR spectroscopy, mass spectrometry and elemental analysis and in the case of 1, 3, 5 and I by X-ray crystallography, which showed the presence of aurophilic interactions in all of them. The obtained metallaligands have been used as building blocks in self-assembly reactions with cis-blocked palladium or platinum acceptor moieties producing [2 + 2] metallamacrocycles or trigonal bipyramidal (TBP) [2 + 3] metallacages in good yields. The photophysical properties of both the metallaligands and the corresponding assemblies have been investigated.

7.
Molecules ; 24(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31817055

ABSTRACT

Despite the recurrence of aurophilic interactions in the solid-state structures of gold(I) compounds, its rational control, modulation, and application in the generation of functional supramolecular structures is an area that requires further development. The ligand effects over the aurophilic-based supramolecular structures need to be better understood. This paper presents the supramolecular structural diversity of a series of new 1,3-bis(diphenylphosphane)propane (dppp) gold(I) fluorinated thiolates with the general formula [Au2(SRF)2(µ-dppp)] (SRF = SC6F5 (1); SC6HF4-4 (2); SC6H3(CF3)2-3,5 (3); SC6H4CF3-2 (4); SC6H4CF3-4 (5); SC6H3F2-3,4 (6); SC6H3F2-3,5 (7); SC6H4F-2 (8); SC6H4F-3 (9); SC6H4F-4 (10)). These compounds were synthesized and characterized, and six of their solid-state crystalline structures were determined using single-crystal X-ray diffraction. In the crystalline arrangement, they form aurophilic-bridged polymers. In these systems, the changes in the fluorination patterns of the thiolate ligands tune the aurophilic-induced self-assembly of the compounds causing tacticity and chiral differentiation of the monomers. This is an example of the use of ligand effects on the tune of the supramolecular association of gold complexes.


Subject(s)
Gold/chemistry , Phosphines/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...