Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Brain ; 145(9): 3288-3307, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35899587

ABSTRACT

Malignant brain tumours are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumours, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumour-associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumour-associated astrocyte translatome revealed astrocytes initiate transcriptional programmes that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumour-associated macrophages and promotes a pro-tumourigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumour progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumour microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. These findings suggest that targeting astrocyte immunometabolic signalling may be useful in treating this uniformly lethal brain tumour.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Astrocytes/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glioma/genetics , Mice , Tumor Microenvironment , Virulence
2.
Biomolecules ; 10(11)2020 11 13.
Article in English | MEDLINE | ID: mdl-33203057

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a disabling common complication of diabetes mellitus (DM). Thrombin, a coagulation factor, is increased in DM and affects nerve function via its G-protein coupled protease activated receptor 1 (PAR1). METHODS: A novel PAR1 modulator (PARIN5) was designed based on the thrombin PAR1 recognition site. Coagulation, motor and sensory function and small fiber loss were evaluated by employing the murine streptozotocin diabetes model. RESULTS: PARIN5 showed a safe coagulation profile and showed no significant effect on weight or glucose levels. Diabetic mice spent shorter time on the rotarod (p <0.001), and had hypoalgesia (p <0.05), slow conduction velocity (p <0.0001) and reduced skin innervation (p <0.0001). Treatment with PARIN5 significantly improved rotarod performance (p <0.05), normalized hypoalgesia (p <0.05), attenuated slowing of nerve conduction velocity (p <0.05) and improved skin innervation (p <0.0001). CONCLUSION: PARIN5 is a novel pharmacological approach for prevention of DPN development, via PAR1 pathway modulation.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Drug Delivery Systems/methods , Peptide Fragments/administration & dosage , Receptor, PAR-1/antagonists & inhibitors , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , Male , Mice , Mice, Inbred C57BL , Receptor, PAR-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...