Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Tuberc Lung Dis ; 23(3): 283-292, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30871659

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is common among tuberculosis (TB) patients and often undiagnosed or poorly controlled. We compared point of care (POC) with laboratory glycated haemoglobin (HbA1c) testing among newly diagnosed TB patients to assess POC test accuracy, safety and acceptability in settings in which immediate access to DM services may be difficult. METHODS: We measured POC and accredited laboratory HbA1c (using high-performance liquid chromatography) in 1942 TB patients aged 18 years recruited from Peru, Romania, Indonesia and South Africa. We calculated overall agreement and individual variation (mean ± 2 standard deviations) stratified by country, age, sex, body mass index (BMI), HbA1c level and comorbidities (anaemia, human immunodeficiency virus [HIV]). We used an error grid approach to identify disagreement that could raise significant concerns. RESULTS: Overall mean POC HbA1c values were modestly higher than laboratory HbA1c levels by 0.1% units (95%CI 0.1-0.2); however, there was a substantial discrepancy for those with severe anaemia (1.1% HbA1c, 95%CI 0.7-1.5). For 89.6% of 1942 patients, both values indicated the same DM status (no DM, HbA1c <6.5%) or had acceptable deviation (relative difference <6%). Individual agreement was variable, with POC values up to 1.8% units higher or 1.6% lower. For a minority, use of POC HbA1c alone could result in error leading to potential overtreatment (n = 40, 2.1%) or undertreatment (n = 1, 0.1%). The remainder had moderate disagreement, which was less likely to influence clinical decisions. CONCLUSION: POC HbA1c is pragmatic and sufficiently accurate to screen for hyperglycaemia and DM risk among TB patients.


Subject(s)
Diabetes Mellitus/diagnosis , Glycated Hemoglobin/analysis , Point-of-Care Testing , Tuberculosis/epidemiology , Adult , Anemia/complications , Anemia/epidemiology , Female , Humans , Male , Mass Screening/methods , Middle Aged , Point-of-Care Systems , Reproducibility of Results
2.
J Neuroendocrinol ; 17(10): 619-38, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16159375

ABSTRACT

Gonadotrophin-releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the treatment of hormone-dependent diseases, as well as for assisted reproductive techniques. In addition to its established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and diverse extra-pituitary mammalian tissues and cells. These findings, together with findings indicating that mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and intensified research into the structure, function and mechanisms of regulation of expression of GnRHR genes. The present review focuses on the current knowledge on tissue-specific and hormonal regulation of transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse regulatory mechanisms in pituitary and extra-pituitary cell types, nonclassical mechanisms of steroid regulation, the use of composite elements for cell-specific expression, the increasing profile of hormones involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species-differences, are highlighted. Although further research is necessary to understand the mechanisms of regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene for facilitating cross-talk between neuroendocrine, immune and stress-response systems in multiple tissues via autocrine, paracrine and endocrine signalling.


Subject(s)
Gene Expression Regulation/physiology , Receptors, LHRH/genetics , Receptors, LHRH/metabolism , Reproduction/genetics , Signal Transduction/genetics , Animals , Gonadotropin-Releasing Hormone/metabolism , Humans , Mammals/genetics , Mammals/physiology , Mice , Pituitary Gland/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/analysis , Rats , Signal Transduction/physiology , Species Specificity , Tissue Distribution , Transcription, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...