Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17323, 2024.
Article in English | MEDLINE | ID: mdl-38726377

ABSTRACT

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Subject(s)
Disease Resistance , Oryza , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Xanthomonas , Xanthomonas/genetics , Oryza/microbiology , Oryza/genetics , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases
2.
bioRxiv ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38352507

ABSTRACT

In Arabidopsis roots, growth initiation and cessation are organized into distinct zones. How regulatory mechanisms are integrated to coordinate these processes and maintain proper growth progression over time is not well understood. Here, we demonstrate that the peptide hormone PLANT PEPTIDE CONTAINING SULFATED TYROSINE 1 (PSY1) promotes root growth by controlling cell elongation. Higher levels of PSY1 lead to longer differentiated cells with a shootward displacement of characteristics common to mature cells. PSY1 activates genes involved in the biosynthesis of flavonols, a group of plant-specific secondary metabolites. Using genetic and chemical approaches, we show that flavonols are required for PSY1 function. Flavonol accumulation downstream of PSY1 occurs in the differentiation zone, where PSY1 also reduces auxin and reactive oxygen species (ROS) activity. These findings support a model where PSY1 signals the developmental-specific accumulation of secondary metabolites to regulate the extent of cell elongation and the overall progression to maturation.

4.
Nat Rev Genet ; 24(10): 659-660, 2023 10.
Article in English | MEDLINE | ID: mdl-37644181
5.
PLoS Biol ; 21(7): e3002243, 2023 07.
Article in English | MEDLINE | ID: mdl-37467459

ABSTRACT

Climate change is affecting the types of plant varieties we can cultivate, as well as how and where we can do so. A new collection of articles explores the twin challenges of engineering plants for resilience to climate change and enhancing their carbon-capture potential.


Subject(s)
Climate Change , Plants , Plants/genetics , Carbon
6.
Proc Natl Acad Sci U S A ; 120(29): e2304612120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428936

ABSTRACT

Root-knot nematodes (Meloidogyne spp.) are highly evolved obligate parasites threatening global food security. These parasites have a remarkable ability to establish elaborate feeding sites in roots, which are their only source of nutrients throughout their life cycle. A wide range of nematode effectors have been implicated in modulation of host pathways for defense suppression and/or feeding site development. Plants produce a diverse array of peptide hormones including PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides, which promote root growth via cell expansion and proliferation. A sulfated PSY-like peptide RaxX (required for activation of XA21 mediated immunity X) produced by the biotrophic bacterial pathogen (Xanthomonas oryzae pv. oryzae) has been previously shown to contribute to bacterial virulence. Here, we report the identification of genes from root-knot nematodes predicted to encode PSY-like peptides (MigPSYs) with high sequence similarity to both bacterial RaxX and plant PSYs. Synthetic sulfated peptides corresponding to predicted MigPSYs stimulate root growth in Arabidopsis. MigPSY transcript levels are highest early in the infection cycle. Downregulation of MigPSY gene expression reduces root galling and egg production, suggesting that the MigPSYs serve as nematode virulence factors. Together, these results indicate that nematodes and bacteria exploit similar sulfated peptides to hijack plant developmental signaling pathways to facilitate parasitism.


Subject(s)
Arabidopsis , Nematoda , Parasites , Tylenchoidea , Animals , Plants , Peptides , Signal Transduction , Tyrosine , Plant Diseases/microbiology , Tylenchoidea/genetics , Plant Roots
7.
Front Plant Sci ; 14: 1181035, 2023.
Article in English | MEDLINE | ID: mdl-37324714

ABSTRACT

Switchgrass (Panicum virgatum L.) is a promising perennial bioenergy crop that achieves high yields with relatively low nutrient and energy inputs. Modification of cell wall composition for reduced recalcitrance can lower the costs of deconstructing biomass to fermentable sugars and other intermediates. We have engineered overexpression of OsAT10, encoding a rice BAHD acyltransferase and QsuB, encoding dehydroshikimate dehydratase from Corynebacterium glutamicum, to enhance saccharification efficiency in switchgrass. These engineering strategies demonstrated low lignin content, low ferulic acid esters, and increased saccharification yield during greenhouse studies in switchgrass and other plant species. In this work, transgenic switchgrass plants overexpressing either OsAT10 or QsuB were tested in the field in Davis, California, USA for three growing seasons. No significant differences in the content of lignin and cell wall-bound p-coumaric acid or ferulic acid were detected in transgenic OsAT10 lines compared with the untransformed Alamo control variety. However, the transgenic overexpressing QsuB lines had increased biomass yield and slightly increased biomass saccharification properties compared to the control plants. This work demonstrates good performance of engineered plants in the field, and also shows that the cell wall changes in the greenhouse were not replicated in the field, emphasizing the need to validate engineered plants under relevant field conditions.

8.
Nature ; 618(7967): 1017-1023, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316672

ABSTRACT

The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.


Subject(s)
Diacylglycerol Cholinephosphotransferase , Disease Resistance , Gene Editing , Oryza , Plant Breeding , Plant Diseases , Disease Resistance/genetics , Gene Editing/methods , Genome, Plant/genetics , Oryza/enzymology , Oryza/genetics , Oryza/microbiology , Phosphatidylinositols/metabolism , Plant Breeding/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Alleles , Phosphatidylinositol 4,5-Diphosphate/metabolism , Diacylglycerol Cholinephosphotransferase/genetics , Diacylglycerol Cholinephosphotransferase/metabolism
9.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36222573

ABSTRACT

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Subject(s)
Climate Change , Ecosystem , Humans , Crops, Agricultural , Carbon , Droughts
10.
Plant Direct ; 6(11): e460, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36447653

ABSTRACT

One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.

11.
J Biol Chem ; 298(8): 102232, 2022 08.
Article in English | MEDLINE | ID: mdl-35798140

ABSTRACT

Tyrosine sulfation, a post-translational modification, can determine and often enhance protein-protein interaction specificity. Sulfotyrosyl residues (sTyrs) are formed by the enzyme tyrosyl-protein sulfotransferase during protein maturation in the Golgi apparatus and most often occur singly or as a cluster within a six-residue span. With both negative charge and aromatic character, sTyr facilitates numerous atomic contacts as visualized in binding interface structural models, thus there is no discernible binding site consensus. Found exclusively in secreted proteins, in this review, we discuss the four broad sequence contexts in which sTyr has been observed: first, a solitary sTyr has been shown to be critical for diverse high-affinity interactions, such as between peptide hormones and their receptors, in both plants and animals. Second, sTyr clusters within structurally flexible anionic segments are essential for a variety of cellular processes, including coreceptor binding to the HIV-1 envelope spike protein during virus entry, chemokine interactions with receptors, and leukocyte rolling cell adhesion. Third, a subcategory of sTyr clusters is found in conserved acidic sequences termed hirudin-like motifs that enable proteins to interact with thrombin; consequently, many proven and potential therapeutic proteins derived from blood-consuming invertebrates depend on sTyrs for their activity. Finally, several proteins that interact with collagen or similar proteins contain one or more sTyrs within an acidic residue array. Refined methods to direct sTyr incorporation in peptides synthesized both in vitro and in vivo, together with continued advances in mass spectrometry and affinity detection, promise to accelerate discoveries of sTyr occurrence and function.


Subject(s)
Peptides , Protein Interaction Domains and Motifs , Tyrosine , Animals , Peptides/chemistry , Protein Processing, Post-Translational , Proteins/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
12.
Plant J ; 110(3): 646-657, 2022 05.
Article in English | MEDLINE | ID: mdl-35106860

ABSTRACT

The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), and upon recognition of the RaxX21-sY peptide produced by Xoo, XA21 activates the plant immune response. Here we screened 21 000 mutant plants expressing XA21 to identify components involved in this response, and reported here the identification of a rice mutant, sxi4, which is susceptible to Xoo. The sxi4 mutant carries a 32-kb translocation from chromosome 3 onto chromosome 7 and displays an elevated level of DCL2a transcript, encoding a Dicer-like protein. Silencing of DCL2a in the sxi4 genetic background restores resistance to Xoo. RaxX21-sY peptide-treated leaves of sxi4 retain the hallmarks of XA21-mediated immune response. However, WRKY45-1, a known negative regulator of rice resistance to Xoo, is induced in the sxi4 mutant in response to RaxX21-sY peptide treatment. A CRISPR knockout of a short interfering RNA (TE-siRNA815) in the intron of WRKY45-1 restores the resistance phenotype in sxi4. These results suggest a model where DCL2a accumulation negatively regulates XA21-mediated immunity by altering the processing of TE-siRNA815.


Subject(s)
Oryza , Xanthomonas , Oryza/metabolism , Peptides/metabolism , Phenotype , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Xanthomonas/metabolism
13.
Mol Plant Microbe Interact ; 34(11): 1307-1315, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34731589

ABSTRACT

Upon encountering a susceptible plant host, a bacterial pathogen expresses specific virulence factors. For example, in planta, the Xanthomonas HrpX protein activates transcription of roughly 150 genes encoding components of the type III secretion system or its translocated effectors, as well as other secreted proteins implicated in pathogenesis. Here, we show that X. oryzae pv. oryzae growth in planta or in HrpX-inducing XOM2 media resulted in HrpX-dependent transcription of the raxX and raxST genes that control production of the RaxX sulfopeptide, exported through a type I secretion system. The RaxX protein is required for activation of XA21-mediated immunity in Xa21+ rice lines. We identified potential plant-inducible promoter elements upstream of the likely 5' ends of the raxX and raxST transcripts. Deletions and nucleotide substitutions confirmed that these elements are required for HrpX-dependent expression of raxX and raxST. We conclude that raxX-raxST gene expression is induced by HrpX during growth in planta and, therefore, is coordinately expressed with other genes required for pathogenesis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Oryza , Plant Diseases , Plant Immunity , Xanthomonas , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Oryza/metabolism , Oryza/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Xanthomonas/pathogenicity
14.
J Econ Entomol ; 114(5): 1934-1949, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34505143

ABSTRACT

The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/genetics , Endotoxins , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , South Africa , Spodoptera , United States , Zea mays/genetics
15.
Microorganisms ; 9(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34361895

ABSTRACT

Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.

16.
Ann N Y Acad Sci ; 1506(1): 35-54, 2021 12.
Article in English | MEDLINE | ID: mdl-34435370

ABSTRACT

Facing the challenges of the world's food sources posed by a growing global population and a warming climate will require improvements in plant breeding and technology. Enhancing crop resiliency and yield via genome engineering will undoubtedly be a key part of the solution. The advent of new tools, such as CRIPSR/Cas, has ushered in significant advances in plant genome engineering. However, several serious challenges remain in achieving this goal. Among them are efficient transformation and plant regeneration for most crop species, low frequency of some editing applications, and high attrition rates. On March 8 and 9, 2021, experts in plant genome engineering and breeding from academia and industry met virtually for the Keystone eSymposium "Plant Genome Engineering: From Lab to Field" to discuss advances in genome editing tools, plant transformation, plant breeding, and crop trait development, all vital for transferring the benefits of novel technologies to the field.


Subject(s)
Congresses as Topic , Crops, Agricultural/genetics , Genetic Engineering/methods , Genome, Plant/genetics , Plant Breeding/methods , Research Report , CRISPR-Cas Systems/genetics , Congresses as Topic/trends , Gene Editing/methods , Gene Editing/trends , Gene Targeting/methods , Gene Targeting/trends , Genetic Engineering/trends
17.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34272287

ABSTRACT

Parent-of-origin-dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin-specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA-producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions-the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.


Subject(s)
Endosperm/genetics , Evolution, Molecular , Genomic Imprinting , Oryza/genetics , DNA Methylation , DNA Transposable Elements , Epigenomics , Gene Expression Regulation, Plant , Mutation , Oryza/classification , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34050013

ABSTRACT

Conventional methods of DNA sequence insertion into plants, using Agrobacterium-mediated transformation or microprojectile bombardment, result in the integration of the DNA at random sites in the genome. These plants may exhibit altered agronomic traits as a consequence of disruption or silencing of genes that serve a critical function. Also, genes of interest inserted at random sites are often not expressed at the desired level. For these reasons, targeted DNA insertion at suitable genomic sites in plants is a desirable alternative. In this paper we review approaches of targeted DNA insertion in plant genomes, discuss current technical challenges, and describe promising applications of targeted DNA insertion for crop genetic improvement.


Subject(s)
Crops, Agricultural/genetics , DNA, Plant/genetics , Gene Transfer Techniques , Genome, Plant , Plants, Genetically Modified/genetics , Transformation, Genetic , Agrobacterium
19.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33608460

ABSTRACT

Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for helical root tip movement known as circumnutation. Here, we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the gene Oryza sativa histidine kinase-1 (HK1) as well as the auxin influx carrier gene OsAUX1 as essential regulators of this process in rice. Robophysical modeling and growth challenge experiments indicate circumnutation is critical for seedling establishment in rocky soil, consistent with the long-standing hypothesis that root circumnutation facilitates growth past obstacles. Thus, the integration of robotics, physics, and biology has elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation.


Subject(s)
Gene Expression Regulation, Plant , Histidine Kinase/metabolism , Indoleacetic Acids/pharmacology , Oryza/growth & development , Plant Proteins/metabolism , Plant Roots/growth & development , Soil/chemistry , Biological Transport , Cytokinins/metabolism , Histidine Kinase/genetics , Oryza/drug effects , Oryza/genetics , Oryza/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism
20.
Nat Plants ; 7(2): 129-136, 2021 02.
Article in English | MEDLINE | ID: mdl-33594262

ABSTRACT

MicroRNA168 (miR168) is a key miRNA that targets Argonaute1 (AGO1), a major component of the RNA-induced silencing complex1,2. Previously, we reported that miR168 expression was responsive to infection by Magnaporthe oryzae, the causal agent of rice blast disease3. However, how miR168 regulates immunity to rice blast and whether it affects rice development remains unclear. Here, we report our discovery that the suppression of miR168 by a target mimic (MIM168) not only improves grain yield and shortens flowering time in rice but also enhances immunity to M. oryzae. These results were validated through repeated tests in rice fields in the absence and presence of rice blast pressure. We found that the miR168-AGO1 module regulates miR535 to improve yield by increasing panicle number, miR164 to reduce flowering time, and miR1320 and miR164 to enhance immunity. Our discovery demonstrates that changes in a single miRNA enhance the expression of multiple agronomically important traits.


Subject(s)
Magnoliopsida/genetics , MicroRNAs/genetics , Oryza/genetics , Plant Breeding/methods , Plant Immunity/genetics , Plants, Genetically Modified/genetics , RNA, Plant/genetics , China , Gene Expression Regulation, Plant , Genes, Plant , Suppression, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...