Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22276878

ABSTRACT

Inflammasome activation is associated with disease severity in patients who are infected with SARS-CoV-2 and influenza viruses, but the specific cell types involved in inflammasome activation, as well as the balance of inflammasome activation versus viral replication in COVID-19 exacerbation and the induction of patient death, are unknown. In this study, we assessed lung autopsies of 47 COVID-19 and 12 influenza fatal cases and examined the inflammatory profiles and inflammasome activation; additionally, we correlated these factors with clinical and histopathological patient conditions. We observed an overall stronger inflammasome activation in lethal cases of SARS-CoV-2 compared to influenza and found a different profile of inflammasome-activating cells during these diseases. In COVID-19 patients, inflammasome activation is mostly mediated by macrophages and endothelial cells, whereas in influenza, type I and type II pneumocytes contribute more significantly. An analysis of gene expression allowed for the classification of COVID-19 patients into two different clusters. Cluster 1 (n=16 patients) died with higher viral loads and exhibited a reduced inflammatory profile than Cluster 2 (n=31 patients). Illness time, mechanical ventilation time, pulmonary fibrosis, respiratory functions, histopathological status, thrombosis, and inflammasome activation significantly differed between the two clusters. Our data demonstrated two distinct profiles in lethal cases of COVID-19, thus indicating that the balance of viral replication and inflammasome-mediated pulmonary inflammation may lead to different clinical conditions, yet both lead to patient death. An understanding of this process is critical for decisions between immune-mediated or antiviral-mediated therapies for the treatment of critical cases of COVID-19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22269768

ABSTRACT

The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. Using a single-cell transcriptome analysis we observed that the expression of GSDMD and inflammasome-related genes were increased in neutrophils from COVID-19 patients. Furthermore, high expression of GSDMD was found associated with NETs structures in the lung tissue of COVID-19 patients. The activation of GSDMD in neutrophils requires live SARS-CoV-2 and occurs after neutrophil infection via ACE2 receptors and serine protease TMPRSS2. In a mouse model of SARS-CoV-2 infection, the treatment with GSDMD inhibitor (disulfiram) reduced NETs release and organ damage. These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology, and suggests that GSDMD inhibitors, can be useful to COVID-19 treatment. In BriefHere, we showed that the activation of the Gasdermin-D (GSDMD) pathway in neutrophils controls NET release during COVID-19. The inhibition of GSDMD with disulfiram, abrogated NET formation reducing lung inflammation and tissue damage. These findings suggest GSDMD as a target for improving the COVID-19 therapy.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-439992

ABSTRACT

The global emergence of Covid-19 has caused huge human casualties. Clinical manifestations of the disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and non-homeostatic inflammatory response. In face of the urgent demand for effective drugs to treat Covid-19, we have searched for candidate compounds using a drug repurposing approach based on in silico analysis followed by biological validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F - a plant used in traditional Chinese medicine - as one of the best compounds out of 39 repurposed drug candidates. Celastrol reverted gene expression signature from SARS-CoV-2-infected cells; bound with high-affinity energy to viral molecular targets such as main protease (Mpro) and receptor-biding domain (RBD); inhibited SARS-CoV-2 replication in monkey (Vero and Vero-ACE2) and human (Caco-2 and Calu-3) cell lines; and decreased interleukin-6 (IL-6) secretion in SARS-CoV-2-infected human cell lines. Interestingly, celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity. Therefore, celastrol is a promising lead drug candidate to treat Covid-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells, two critical events in the pathophysiology of this disease.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21251504

ABSTRACT

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppress macrophage anti-inflammation and efficient tissue repair programs and provide mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20168872

ABSTRACT

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1{beta} and IL-18. Although the participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease is unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and it is active in COVID-19, influencing the clinical outcome of the disease. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of post-mortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that the inflammasome is key in the pathophysiology of the disease, indicating this platform as a marker of disease severity and a potential therapeutic target for COVID-19.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-225912

ABSTRACT

Although SARS-CoV-2 severe infection is associated with a hyperinflammatory state, lymphopenia is an immunological hallmark, and correlates with poor prognosis in COVID-19. However, it remains unknown if circulating human lymphocytes and monocytes are susceptible to SARS-CoV-2 infection. In this study, SARS-CoV-2 infection of human peripheral blood mononuclear cells (PBMCs) was investigated both in vitro and in vivo. We found that in vitro infection of whole PBMCs from healthy donors was productive of virus progeny. Results revealed that monocytes, as well as B and T lymphocytes, are susceptible to SARS-CoV-2 active infection and viral replication was indicated by detection of double-stranded RNA. Moreover, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from COVID-19 patients, and less frequently in CD4+T lymphocytes. The rates of SARS-CoV-2-infected monocytes in PBMCs from COVID-19 patients increased over time from symptom onset. Additionally, SARS-CoV-2-positive monocytes and B and CD4+T lymphocytes were detected by immunohistochemistry in post mortem lung tissue. SARS-CoV-2 infection of blood circulating leukocytes in COVID-19 patients may have important implications for disease pathogenesis, immune dysfunction, and virus spread within the host.

SELECTION OF CITATIONS
SEARCH DETAIL
...