Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Genet ; 55(9): 1483-1493, 2023 09.
Article in English | MEDLINE | ID: mdl-37592024

ABSTRACT

Our understanding of the genetics of the human cerebral cortex is limited both in terms of the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes include cortical thickness, surface area, gray matter volume, measures of folding, neurite density and water diffusion. We identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with cortical expansion are associated with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic relationships among the 13 phenotypes, reflecting the developmental differences among them. Together, these analyses identify distinct genetic organizational principles of the cortex and their correlates with neurodevelopment.


Subject(s)
Cerebral Cortex , Genome-Wide Association Study , Humans , Cerebral Cortex/diagnostic imaging , Brain/diagnostic imaging , Neuroimaging , Phenotype
2.
Med Image Anal ; 87: 102807, 2023 07.
Article in English | MEDLINE | ID: mdl-37120992

ABSTRACT

Low-field (<1T) magnetic resonance imaging (MRI) scanners remain in widespread use in low- and middle-income countries (LMICs) and are commonly used for some applications in higher income countries e.g. for small child patients with obesity, claustrophobia, implants, or tattoos. However, low-field MR images commonly have lower resolution and poorer contrast than images from high field (1.5T, 3T, and above). Here, we present Image Quality Transfer (IQT) to enhance low-field structural MRI by estimating from a low-field image the image we would have obtained from the same subject at high field. Our approach uses (i) a stochastic low-field image simulator as the forward model to capture uncertainty and variation in the contrast of low-field images corresponding to a particular high-field image, and (ii) an anisotropic U-Net variant specifically designed for the IQT inverse problem. We evaluate the proposed algorithm both in simulation and using multi-contrast (T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR)) clinical low-field MRI data from an LMIC hospital. We show the efficacy of IQT in improving contrast and resolution of low-field MR images. We demonstrate that IQT-enhanced images have potential for enhancing visualisation of anatomical structures and pathological lesions of clinical relevance from the perspective of radiologists. IQT is proved to have capability of boosting the diagnostic value of low-field MRI, especially in low-resource settings.


Subject(s)
Brain , Contrast Media , Child , Humans , Brain/pathology , Magnetic Resonance Imaging/methods , Image Enhancement/methods , Algorithms
3.
Front Psychol ; 12: 667848, 2021.
Article in English | MEDLINE | ID: mdl-34393901

ABSTRACT

Studies reported a strong impact on mental health during the first wave of the COVID-19 pandemic in March-June, 2020. In this study, we assessed the impact of the pandemic on mental health in general and on schizotypal traits in two independent general population samples of the United Kingdom (May sample N: 239, October sample N: 126; participation at both timepoints: 21) and in two independent general population samples of Germany (May sample N: 543, October sample N: 401; participation at both timepoints: 100) using online surveys. Whereas general psychological symptoms (global symptom index, GSI) and percentage of responders above clinical cut-off for further psychological investigation were higher in the May sample compared to the October sample, schizotypy scores (Schizotypal Personality Questionnaire) were higher in the October sample. We investigated potential associations, using general linear regression models (GLM). For schizotypy scores, we found that loneliness, use of drugs, and financial burden were more strongly corrected with schizotypy in the October compared to the May sample. We identified similar associations for GSI, as for schizotypy scores, in the May and October samples. We furthermore found that living in the United Kingdom was related to higher schizotypal scores or GSI. However, individual estimates of the GLM are highly comparable between the two countries. In conclusion, this study shows that while the general psychological impact is lower in the October than the May sample, potentially showing a normative response to an exceptional situation; schizotypy scores are higher at the second timepoint, which may be due to a stronger impact of estimates of loneliness, drug use, and financial burden. The ongoing, exceptional circumstances within this pandemic might increase the risk for developing psychosis in some individuals. The development of general psychological symptoms and schizotypy scores over time requires further attention and investigation.

4.
BMC Psychol ; 9(1): 60, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33892807

ABSTRACT

BACKGROUND: The COVID-19 pandemic has led to dramatic social and economic changes in daily life. First studies report an impact on mental health of the general population showing increased levels of anxiety, stress and depression. In this study, we compared the impact of the pandemic on two culturally and economically similar European countries: the UK and Germany. METHODS: Participants (UK = 241, German = 541) completed an online-survey assessing COVID-19 exposure, impact on financial situation and work, substance and media consumption, mental health using the Symptom-Check-List-27 (SCL-27) and the Schizotypal Personality Questionnaire. RESULTS: We found distinct differences between the two countries. UK responders reported a stronger direct impact on health, financial situation and families. UK responders had higher clinical scores on the SCL-27, and higher prevalence. Interestingly, German responders were less hopeful for an end of the pandemic and more concerned about their life-stability. CONCLUSION: As 25% of both German and UK responders reported a subjective worsening of the general psychological symptoms and 20-50% of German and UK responders reached the clinical cut-off for depressive and dysthymic symptoms as well as anxieties, it specifically shows the need for tailored intervention systems to support large proportions of the general public.


Subject(s)
COVID-19 , Pandemics , Anxiety/epidemiology , Depression/epidemiology , Germany/epidemiology , Humans , Mental Health , SARS-CoV-2 , United Kingdom/epidemiology
5.
Neuroimage ; 222: 117299, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32828920

ABSTRACT

Ageing is commonly associated with changes to segregation and integration of functional brain networks, but, in isolation, current network-based approaches struggle to elucidate changes across the many axes of functional organisation. However, the advent of gradient mapping techniques in neuroimaging provides a new means of studying functional organisation in a multi-dimensional connectivity space. Here, we studied ageing and behaviourally-relevant differences in a three-dimensional connectivity space using the Cambridge Centre for Ageing Neuroscience cohort (n = 643). Building on gradient mapping techniques, we developed a set of measures to quantify the dispersion within and between functional communities. We detected a strong shift of the visual network across the adult lifespan from an extreme to a more central position in the 3D gradient space. In contrast, the dispersion distance between transmodal communities (dorsal attention, ventral attention, frontoparietal and default mode) did not change. However, these communities themselves were increasingly dispersed with increasing age, reflecting more dissimilar functional connectivity profiles within each community. Increasing dispersion of frontoparietal, attention and default mode networks, in particular, were associated negatively with cognition, measured by fluid intelligence. By using a technique that explicitly captures the ordering of functional systems in a multi-dimensional hierarchical framework, we identified behaviorally-relevant age-related differences of within and between network organisation. We propose that the study of functional gradients across the adult lifespan could provide insights that may facilitate the development of new strategies to maintain cognitive ability across the lifespan in health and disease.


Subject(s)
Aging/physiology , Brain/physiology , Cognition/physiology , Longevity/physiology , Nerve Net/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Attention/physiology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
6.
Cereb Cortex ; 30(4): 2519-2528, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31646343

ABSTRACT

The development of executive function is linked to maturation of prefrontal cortex (PFC) in childhood. Childhood obesity has been associated with changes in brain structure, particularly in PFC, as well as deficits in executive functions. We aimed to determine whether differences in cortical structure mediate the relationship between executive function and childhood obesity. We analyzed MR-derived measures of cortical thickness for 2700 children between the ages of 9 and 11 years, recruited as part of the NIH Adolescent Brain and Cognitive Development (ABCD) study. We related our findings to measures of executive function and body mass index (BMI). In our analysis, increased BMI was associated with significantly reduced mean cortical thickness, as well as specific bilateral reduced cortical thickness in prefrontal cortical regions. This relationship remained after accounting for age, sex, race, parental education, household income, birth-weight, and in-scanner motion. Increased BMI was also associated with lower executive function. Reduced thickness in the rostral medial and superior frontal cortex, the inferior frontal gyrus, and the lateral orbitofrontal cortex partially accounted for reductions in executive function. These results suggest that childhood obesity is associated with compromised executive function. This relationship may be partly explained by BMI-associated reduced cortical thickness in the PFC.


Subject(s)
Body Mass Index , Cerebral Cortex/diagnostic imaging , Executive Function/physiology , Pediatric Obesity/diagnostic imaging , Pediatric Obesity/psychology , Cerebral Cortex/physiology , Child , Cross-Sectional Studies , Databases, Factual/trends , Female , Humans , Magnetic Resonance Imaging/trends , Male , Organ Size/physiology , Pediatric Obesity/physiopathology
7.
Int J Obes (Lond) ; 43(3): 523-532, 2019 03.
Article in English | MEDLINE | ID: mdl-30568264

ABSTRACT

BACKGROUND: While gross measures of brain structure have shown alterations with increasing body mass index (BMI), the extent and nature of such changes has varied substantially across studies. Here, we sought to determine whether small-scale morphometric measures might prove more sensitive and reliable than larger scale measures and whether they might offer a valuable opportunity to link cortical changes to underlying white matter changes. To examine this, we explored the association of BMI with millimetre-scale Gaussian curvature, in addition to standard measures of morphometry such as cortical thickness, surface area and mean curvature. We also assessed the volume and integrity of the white matter, using white matter signal intensity and fractional anisotropy (FA). We hypothesised that BMI would be linked to small-scale changes in Gaussian curvature and that this phenomenon would be mediated by changes in the integrity of the underlying white matter. METHODS: The association of global measures of T1-weighted cortical morphometry with BMI was examined using linear regression and mediation analyses in two independent groups of healthy young to middle aged human subjects (n1 = 52, n2 = 202). In a third dataset of (n3 = 897), which included diffusion tensor images, we sought to replicate the significant associations established in the first two datasets, and examine the potential mechanistic link between BMI-associated cortical changes and global FA. RESULTS: Gaussian curvature of the white matter surface showed a significant, positive association with BMI across all three independent datasets. This effect was mediated by a negative association between the integrity of the white matter and BMI. CONCLUSIONS: Increasing BMI is associated with changes in white matter microstructure in young to middle-aged healthy adults. Our results are consistent with a model whereby BMI-linked cortical changes are mediated by the effects of BMI on white matter microstructure.


Subject(s)
Body Mass Index , Brain/pathology , White Matter/pathology , Adolescent , Adult , Anisotropy , Brain/diagnostic imaging , Diffusion Tensor Imaging , Female , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Obesity/diagnostic imaging , Obesity/epidemiology , Obesity/pathology , White Matter/diagnostic imaging , Young Adult
8.
Front Neurosci ; 11: 218, 2017.
Article in English | MEDLINE | ID: mdl-28473750

ABSTRACT

Magnetic resonance imaging (MRI) studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD). Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd); 17.2 (3.4), 16.8 (3.2), and 17.7 (3.8), respectively)]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity) and local gyrification index were calculated for each point on the surface (vertex) with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found no milimeter-scale connectivity abnormalities associated with ADHD.

9.
Brain Struct Funct ; 222(8): 3653-3663, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28417232

ABSTRACT

Adolescence is a period of significant brain changes; however, the effects of age and sex on cortical development are yet to be fully characterized. Here, we utilized innovative intrinsic curvature (IC) analysis, along with the traditional cortical measures [cortical thickness (CT), local gyrification index (LGI), and surface area (SA)], to investigate how these indices (1) relate to each other and (2) depend on age and sex in adolescent cortical development. T1-weighted magnetic resonance images from 218 healthy volunteers (age range 8.3-29.2 years, M[SD] = 16.5[3.4]) were collected at two sites and processed with FreeSurfer and Caret software packages. Surface indices were extracted per cortex area (frontal, parietal, occipital, temporal, insula, and cingulate). Correlation analyses between the surface indices were conducted and age curves were modelled using generalized additive mixed-effect models. IC showed region-specific associations with LGI, SA, and CT, as did CT with LGI. SA was positively associated with LGI in all regions and CT in none. CT and LGI, but not SA, were inversely associated with age in all regions. IC was inversely associated with age in all but the occipital region. For all regions, males had larger cortical SA than females. Males also had larger LGI in all regions and larger IC of the frontal area; however, these effects were accounted for by sex differences in SA. There were no age-by-sex interactions. The study of IC adds a semi-independent, sensitive measure of cortical morphology that relates to the underlying cytoarchitecture and may aid understanding of normal brain development and deviations from it.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/growth & development , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Child , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Sex Characteristics , Young Adult
10.
Neuroimage Clin ; 14: 18-27, 2017.
Article in English | MEDLINE | ID: mdl-28123950

ABSTRACT

Focal cortical dysplasia is a congenital abnormality of cortical development and the leading cause of surgically remediable drug-resistant epilepsy in children. Post-surgical outcome is improved by presurgical lesion detection on structural MRI. Automated computational techniques have improved detection of focal cortical dysplasias in adults but have not yet been effective when applied to developing brains. There is therefore a need to develop reliable and sensitive methods to address the particular challenges of a paediatric cohort. We developed a classifier using surface-based features to identify focal abnormalities of cortical development in a paediatric cohort. In addition to established measures, such as cortical thickness, grey-white matter blurring, FLAIR signal intensity, sulcal depth and curvature, our novel features included complementary metrics of surface morphology such as local cortical deformation as well as post-processing methods such as the "doughnut" method - which quantifies local variability in cortical morphometry/MRI signal intensity, and per-vertex interhemispheric asymmetry. A neural network classifier was trained using data from 22 patients with focal epilepsy (mean age = 12.1 ± 3.9, 9 females), after intra- and inter-subject normalisation using a population of 28 healthy controls (mean age = 14.6 ± 3.1, 11 females). Leave-one-out cross-validation was used to quantify classifier sensitivity using established features and the combination of established and novel features. Focal cortical dysplasias in our paediatric cohort were correctly identified with a higher sensitivity (73%) when novel features, based on our approach for detecting local cortical changes, were included, when compared to the sensitivity using only established features (59%). These methods may be applicable to aiding identification of subtle lesions in medication-resistant paediatric epilepsy as well as to the structural analysis of both healthy and abnormal cortical development.


Subject(s)
Brain Mapping , Cerebral Cortex/diagnostic imaging , Epilepsy/complications , Malformations of Cortical Development, Group I/diagnostic imaging , Malformations of Cortical Development, Group I/etiology , Adolescent , Area Under Curve , Child , Child, Preschool , Epilepsy/diagnostic imaging , Epilepsy/etiology , Female , Humans , Imaging, Three-Dimensional , Machine Learning , Magnetic Resonance Imaging , Male , Oxygen/blood
11.
Neurobiol Aging ; 47: 63-70, 2016 11.
Article in English | MEDLINE | ID: mdl-27562529

ABSTRACT

Common mechanisms in aging and obesity are hypothesized to increase susceptibility to neurodegeneration, however, direct evidence in support of this hypothesis is lacking. We therefore performed a cross-sectional analysis of magnetic resonance image-based brain structure on a population-based cohort of healthy adults. Study participants were originally part of the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) and included 527 individuals aged 20-87 years. Cortical reconstruction techniques were used to generate measures of whole-brain cerebral white-matter volume, cortical thickness, and surface area. Results indicated that cerebral white-matter volume in overweight and obese individuals was associated with a greater degree of atrophy, with maximal effects in middle-age corresponding to an estimated increase of brain age of 10 years. There were no similar body mass index-related changes in cortical parameters. This study suggests that at a population level, obesity may increase the risk of neurodegeneration.


Subject(s)
Aging/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Neurodegenerative Diseases/etiology , Obesity/diagnostic imaging , Obesity/pathology , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged , Aged, 80 and over , Atrophy , Body Surface Area , Cohort Studies , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Obesity/complications , Risk , Young Adult
12.
Hum Brain Mapp ; 37(7): 2385-97, 2016 07.
Article in English | MEDLINE | ID: mdl-27004471

ABSTRACT

While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among "good quality" structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects' tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, and young adults, significant relationships were found between this measure and estimates of cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean curvature increased. These effects of subtle motion were anatomically heterogeneous, were present across different automated imaging pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed that in-scanner motion-even at levels which do not manifest in visible motion artifact-can lead to systematic and regionally specific biases in anatomical estimation. These findings have special relevance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated humans. Hum Brain Mapp 37:2385-2397, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Motion , Pattern Recognition, Automated , Adolescent , Adult , Artifacts , Brain/growth & development , Child , Child, Preschool , Female , Gray Matter/diagnostic imaging , Gray Matter/growth & development , Humans , Male , Organ Size , Young Adult
13.
Biol Psychiatry ; 78(6): 413-20, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25758056

ABSTRACT

BACKGROUND: Schizophrenia is associated with structural brain abnormalities that may be present before disease onset. It remains unclear whether these represent general vulnerability indicators or are associated with the clinical state itself. METHODS: To investigate this, structural brain scans were acquired at two time points (mean scan interval 1.87 years) in a cohort of individuals at high familial risk of schizophrenia (n = 142) and control subjects (n = 36). Cortical reconstructions were generated using FreeSurfer. The high-risk cohort was subdivided into individuals that remained well during the study, individuals that had transient psychotic symptoms, and individuals that subsequently became ill. Baseline measures and longitudinal change in global estimates of thickness and surface area and lobar values were compared, focusing on overall differences between high-risk individuals and control subjects and then on group differences within the high-risk cohort. RESULTS: Longitudinally, control subjects showed a significantly greater reduction in cortical surface area compared with the high-risk group. Within the high-risk group, differences in surface area at baseline predicted clinical course, with individuals that subsequently became ill having significantly larger surface area than individuals that remained well during the study. For thickness, longitudinal reductions were most prominent in the frontal, cingulate, and occipital lobes in all high-risk individuals compared with control subjects. CONCLUSIONS: Our results suggest that larger surface areas at baseline may be associated with mechanisms that go above and beyond a general familial disposition. A relative preservation over time of surface area, coupled with a thinning of the cortex compared with control subjects, may serve as vulnerability markers of schizophrenia.


Subject(s)
Cerebral Cortex/pathology , Schizophrenia/pathology , Adolescent , Adult , Family Health , Female , Genetic Predisposition to Disease , Humans , Male , Prognosis , Prospective Studies , Risk Factors , Schizophrenia/etiology , Young Adult
14.
Neuroimage ; 111: 241-50, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25725468

ABSTRACT

MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used-the thickness of the cortex-shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species-macaque and human-and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure-function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses.


Subject(s)
Auditory Cortex/anatomy & histology , Magnetic Resonance Imaging/methods , Somatosensory Cortex/anatomy & histology , Visual Cortex/anatomy & histology , Adult , Animals , Auditory Cortex/cytology , Humans , Macaca , Somatosensory Cortex/cytology , Visual Cortex/cytology
15.
Brain Struct Funct ; 220(5): 2475-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25511709

ABSTRACT

Cortical gyrification is not a random process. Instead, the folds that develop are synonymous with the functional organization of the cortex, and form patterns that are remarkably consistent across individuals and even some species. How this happens is not well understood. Although many developmental features and evolutionary adaptations have been proposed as the primary cause of gyrencephaly, it is not evident that gyrification is reducible in this way. In recent years, we have greatly increased our understanding of the multiple factors that influence cortical folding, from the action of genes in health and disease to evolutionary adaptations that characterize distinctions between gyrencephalic and lissencephalic cortices. Nonetheless it is unclear how these factors which influence events at a small-scale synthesize to form the consistent and biologically meaningful large-scale features of sulci and gyri. In this article, we review the empirical evidence which suggests that gyrification is the product of a generalized mechanism, namely the differential expansion of the cortex. By considering the implications of this model, we demonstrate that it is possible to link the fundamental biological components of the cortex to its large-scale pattern-specific morphology and functional organization.


Subject(s)
Cerebral Cortex/anatomy & histology , Gene Expression/genetics , Image Processing, Computer-Assisted , Models, Neurological , Morphogenesis/physiology , Animals , Body Patterning/physiology , Humans
16.
Neuroimage ; 90: 280-9, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24384148

ABSTRACT

BACKGROUND: The brain-derived neurotrophic factor (BDNF) val66met polymorphism is associated with altered activity dependent secretion of BDNF and a variable influence on brain morphology and cognition. Although a met-dose effect is generally assumed, to date the paucity of met-homozygotes have limited our understanding of the role of the met-allele on brain structure. METHODS: To investigate this phenomenon, we recruited sixty normal healthy subjects, twenty in each genotypic group (val/val, val/met and met/met). Global and local morphology were assessed using voxel based morphometry and surface reconstruction methods. White matter organisation was also investigated using tract-based spatial statistics and constrained spherical deconvolution tractography. RESULTS: Morphological analysis revealed an "inverted-U" shaped profile of cortical changes, with val/met heterozygotes most different relative to the two homozygous groups. These results were evident at a global and local level as well as in tractography analysis of white matter fibre bundles. CONCLUSION: In contrast to our expectations, we found no evidence of a linear met-dose effect on brain structure, rather our results support the view that the heterozygotic BDNF val66met genotype is associated with cortical morphology that is more distinct from the BDNF val66met homozygotes. These results may prove significant in furthering our understanding of the role of the BDNF met-allele in disorders such as Alzheimer's disease and depression.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Brain/anatomy & histology , Polymorphism, Single Nucleotide , Adolescent , Adult , Alleles , Diffusion Tensor Imaging , Female , Genotype , Heterozygote , Homozygote , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Young Adult
17.
Cereb Cortex ; 24(8): 2219-28, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23542881

ABSTRACT

Gyrification, the developmental buckling of the cortex, is not a random process-the forces that mediate expansion do so in such a way as to generate consistent patterns of folds across individuals and even species. Although the origin of these forces is unknown, some theories have suggested that they may be related to external cortical factors such as axonal tension. Here, we investigate an alternative hypothesis, namely, whether the differential tangential expansion of the cortex alone can account for the degree and pattern-specificity of gyrification. Using intrinsic curvature as a measure of differential expansion, we initially explored whether this parameter and the local gyrification index (used to quantify the degree of gyrification) varied in a regional-specific pattern across the cortical surface in a manner that was replicable across independent datasets of neurotypicals. Having confirmed this consistency, we further demonstrated that within each dataset, the degree of intrinsic curvature of the cortex was predictive of the degree of cortical folding at a global and regional level. We conclude that differential expansion is a plausible primary mechanism for gyrification, and propose that this perspective offers a compelling mechanistic account of the co-localization of cytoarchitecture and cortical folds.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/growth & development , Models, Neurological , Adult , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Young Adult
18.
Epilepsia ; 54(9): e138-41, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23944956

ABSTRACT

The goal of this study was to characterize cerebral cortex thickness patterns in juvenile myoclonic epilepsy (JME). Surface-based morphometry (SBM) was applied to process brain magnetic resonance images acquired from 24 patients with JME and 40 healthy controls and quantify cerebral cortex thickness. Differences in cortical thickness between patients and controls were determined using generalized linear model (covariates: age and gender). In patients with JME, thickness increase was detected bilaterally within localized regions in the orbitofrontal and mesial frontal cortices. Such thickness patterns coexisted with significant bilateral reduction in thalamic volume. These findings confirm that the underlying mechanisms in JME are related to aberrant corticothalamic structure and indicate that frontal cortex abnormalities are possibly linked to regional increase in cerebral cortical thickness.


Subject(s)
Brain Mapping , Cerebral Cortex/pathology , Frontal Lobe/pathology , Myoclonic Epilepsy, Juvenile/pathology , Thalamus/pathology , Adult , Female , Humans , Image Processing, Computer-Assisted , Male
19.
Proc Natl Acad Sci U S A ; 110(32): 13222-7, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878213

ABSTRACT

Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.


Subject(s)
Autistic Disorder/pathology , Autistic Disorder/physiopathology , Brain/pathology , Brain/physiopathology , Adult , Brain Mapping/methods , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/pathology , Nerve Net/physiopathology , Young Adult
20.
PLoS One ; 8(4): e61880, 2013.
Article in English | MEDLINE | ID: mdl-23626743

ABSTRACT

OBJECTIVES: We aimed to 1) determine if subcortical volume deficits are common to mesial temporal lobe epilepsy (MTLE) patients and their unaffected siblings 2) assess the suitability of subcortical volumetric traits as endophenotypes for MTLE. METHODS: MRI-based volume measurements of the hippocampus, amygdala, thalamus, caudate, putamen and pallidium were generated using an automated brain reconstruction method (FreeSurfer) for 101 unrelated 'sporadic' MTLE patients [70 with hippocampal sclerosis (MTLE+HS), 31 with MRI-negative TLE], 83 unaffected full siblings of patients and 86 healthy control subjects. Changes in the volume of subcortical structures in patients and their unaffected siblings were determined by comparison with healthy controls. Narrow sense heritability was estimated ipsilateral and contralateral to the side of seizure activity. RESULTS: MTLE+HS patients displayed significant volume deficits across the hippocampus, amygdala and thalamus ipsilaterally. In addition, volume loss was detected in the putamen bilaterally. These volume deficits were not present in the unaffected siblings of MTLE+HS patients. Ipsilaterally, the heritability estimates were dramatically reduced for the volume of the hippocampus, thalamus and putamen but remained in the expected range for the amygdala. MRI-negative TLE patients and their unaffected siblings showed no significant volume changes across the same structures and heritability estimates were comparable with calculations from a healthy population. CONCLUSIONS: The findings indicate that volume deficits for many subcortical structures in 'sporadic' MTLE+HS are not heritable and likely related to acquired factors. Therefore, they do not represent suitable endophenotypes for MTLE+HS. The findings also support the view that, at a neuroanatomical level, MTLE+HS and MRI-negative TLE represent two distinct forms of MTLE.


Subject(s)
Amygdala/pathology , Caudate Nucleus/pathology , Epilepsy, Temporal Lobe/congenital , Hippocampus/pathology , Putamen/pathology , Thalamus/pathology , Adult , Brain Mapping , Case-Control Studies , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/pathology , Female , Functional Neuroimaging , Humans , Inheritance Patterns , Magnetic Resonance Imaging , Male , Middle Aged , Phenotype , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL
...