Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
NPJ Parkinsons Dis ; 10(1): 126, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951523

ABSTRACT

Many studies have reported metabolomic analysis of different bio-specimens from Parkinson's disease (PD) patients. However, inconsistencies in reported metabolite concentration changes make it difficult to draw conclusions as to the role of metabolism in the occurrence or development of Parkinson's disease. We reviewed the literature on metabolomic analysis of PD patients. From 74 studies that passed quality control metrics, 928 metabolites were identified with significant changes in PD patients, but only 190 were replicated with the same changes in more than one study. Of these metabolites, 60 exclusively increased, such as 3-methoxytyrosine and glycine, 54 exclusively decreased, such as pantothenic acid and caffeine, and 76 inconsistently changed in concentration in PD versus control subjects, such as ornithine and tyrosine. A genome-scale metabolic model of PD and corresponding metabolic map linking most of the replicated metabolites enabled a better understanding of the dysfunctional pathways of PD and the prediction of additional potential metabolic markers from pathways with consistent metabolite changes to target in future studies.

2.
Commun Biol ; 6(1): 1179, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985891

ABSTRACT

The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.


Subject(s)
Neural Stem Cells , Parkinson Disease , Humans , Parkinson Disease/metabolism , NAD/metabolism , Neural Stem Cells/metabolism , Mitochondria/metabolism , Dopaminergic Neurons/metabolism
3.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873072

ABSTRACT

Computational modelling of microbiome metabolism has proved instrumental to catalyse our understanding of diet-host-microbiome-disease interactions through the interrogation of mechanistic, strain- and molecule-resolved metabolic models. We present APOLLO, a resource of 247,092 human microbial genome-scale metabolic reconstructions spanning 19 phyla and accounting for microbial genomes from 34 countries, all age groups, and five body sites. We explored the metabolic potential of the reconstructed strains and developed a machine learning classifier able to predict with high accuracy the taxonomic strain assignments. We also built 14,451 sample-specific microbial community models, which could be stratified by body site, age, and disease states. Finally, we predicted faecal metabolites enriched or depleted in gut microbiomes of people with Crohn's disease, Parkinson disease, and undernourished children. APOLLO is compatible with the human whole-body models, and thus, provide unprecedented opportunities for systems-level modelling of personalised host-microbiome co-metabolism. APOLLO will be freely available under https://www.vmh.life/.

4.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37697651

ABSTRACT

MOTIVATION: Several applications in constraint-based modelling can be mathematically formulated as cardinality optimization problems involving the minimization or maximization of the number of nonzeros in a vector. These problems include testing for stoichiometric consistency, testing for flux consistency, testing for thermodynamic flux consistency, computing sparse solutions to flux balance analysis problems and computing the minimum number of constraints to relax to render an infeasible flux balance analysis problem feasible. Such cardinality optimization problems are computationally complex, with no known polynomial time algorithms capable of returning an exact and globally optimal solution. RESULTS: By approximating the zero-norm with nonconvex continuous functions, we reformulate a set of cardinality optimization problems in constraint-based modelling into a difference of convex functions. We implemented and numerically tested novel algorithms that approximately solve the reformulated problems using a sequence of convex programs. We applied these algorithms to various biochemical networks and demonstrate that our algorithms match or outperform existing related approaches. In particular, we illustrate the efficiency and practical utility of our algorithms for cardinality optimization problems that arise when extracting a model ready for thermodynamic flux balance analysis given a human metabolic reconstruction. AVAILABILITY AND IMPLEMENTATION: Open source scripts to reproduce the results are here https://github.com/opencobra/COBRA.papers/2023_cardOpt with general purpose functions integrated within the COnstraint-Based Reconstruction and Analysis toolbox: https://github.com/opencobra/cobratoolbox.


Subject(s)
Algorithms , Humans , Thermodynamics
5.
Nat Biotechnol ; 41(9): 1320-1331, 2023 09.
Article in English | MEDLINE | ID: mdl-36658342

ABSTRACT

The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Precision Medicine , Genome , Genomics , Gastrointestinal Microbiome/genetics
6.
Bioinformatics ; 38(20): 4831-4832, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36047841

ABSTRACT

MOTIVATION: Genome-scale metabolic reconstructions have been assembled for thousands of organisms using a wide range of tools. However, metabolite annotations, required to compare and link metabolites between reconstructions, remain incomplete. Here, we aim to further extend metabolite annotation coverage using various databases and chemoinformatic approaches. RESULTS: We developed a COBRA toolbox extension, deemed MetaboAnnotator, which facilitates the comprehensive annotation of metabolites with database independent and dependent identifiers, obtains molecular structure files, and calculates metabolite formula and charge at pH 7.2. The resulting metabolite annotations allow for subsequent cross-mapping between reconstructions and mapping of, e.g., metabolomic data. AVAILABILITY AND IMPLEMENTATION: MetaboAnnotator and tutorials are freely available at https://github.com/opencobra. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metabolic Networks and Pathways , Software , Databases, Factual , Genome , Metabolomics
7.
Comput Struct Biotechnol J ; 20: 4098-4109, 2022.
Article in English | MEDLINE | ID: mdl-35874091

ABSTRACT

We aimed at investigating host-virus co-metabolism during SARS-CoV-2 infection. Therefore, we extended comprehensive sex-specific, whole-body organ resolved models of human metabolism with the necessary reactions to replicate SARS-CoV-2 in the lung as well as selected peripheral organs. Using this comprehensive host-virus model, we obtained the following key results: 1. The predicted maximal possible virus shedding rate was limited by isoleucine availability. 2. The supported initial viral load depended on the increase in CD4+ T-cells, consistent with the literature. 3. During viral infection, the whole-body metabolism changed including the blood metabolome, which agreed well with metabolomic studies from COVID-19 patients and healthy controls. 4. The virus shedding rate could be reduced by either inhibition of the guanylate kinase 1 or availability of amino acids, e.g., in the diet. 5. The virus variants differed in their maximal possible virus shedding rates, which could be inversely linked to isoleucine occurrences in the sequences. Taken together, this study presents the metabolic crosstalk between host and virus and emphasises the role of amino acid metabolism during SARS-CoV-2 infection, in particular of isoleucine. As such, it provides an example of how computational modelling can complement more canonical approaches to gain insight into host-virus crosstalk and to identify potential therapeutic strategies.

8.
Bioinformatics ; 37(21): 3974-3975, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34473240

ABSTRACT

MOTIVATION: Manual curation of genome-scale reconstructions is laborious, yet existing automated curation tools do not typically take species-specific experimental and curated genomic data into account. RESULTS: We developed Data-drivEn METabolic nEtwork Refinement (DEMETER), a Constraint-Based Reconstruction and Analysis (COBRA) Toolbox extension, which enables the efficient, simultaneous refinement of thousands of draft genome-scale reconstructions, while ensuring adherence to the quality standards in the field, agreement with available experimental data and refinement of pathways based on manually refined genome annotations. AVAILABILITY AND IMPLEMENTATION: DEMETER and tutorials are freely available at https://github.com/opencobra. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metabolic Networks and Pathways , Software , Molecular Sequence Annotation , Genome , Genomics
9.
Front Aging Neurosci ; 12: 553635, 2020.
Article in English | MEDLINE | ID: mdl-33132895

ABSTRACT

Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson's and Alzheimer's diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.

10.
J Theor Biol ; 499: 110276, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32333975

ABSTRACT

Characterising biochemical reaction network structure in mathematical terms enables the inference of functional biochemical consequences from network structure with existing mathematical techniques and spurs the development of new mathematics that exploits the peculiarities of biochemical network structure. The structure of a biochemical network may be specified by reaction stoichiometry, that is, the relative quantities of each molecule produced and consumed in each reaction of the network. A biochemical network may also be specified at a higher level of resolution in terms of the internal structure of each molecule and how molecular structures are transformed by each reaction in a network. The stoichiometry for a set of reactions can be compiled into a stoichiometric matrix N∈Zm×n, where each row corresponds to a molecule and each column corresponds to a reaction. We demonstrate that a stoichiometric matrix may be split into the sum of m-rank(N) moiety transition matrices, each of which corresponds to a subnetwork accessible to a structurally identifiable conserved moiety. The existence of this moiety matrix splitting is a property that distinguishes a stoichiometric matrix from an arbitrary rectangular matrix.


Subject(s)
Cell Physiological Phenomena , Mathematics
13.
Cell Rep ; 29(7): 1767-1777.e8, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722195

ABSTRACT

Parkinson's disease (PD) exhibits systemic effects on the human metabolism, with emerging roles for the gut microbiome. Here, we integrate longitudinal metabolome data from 30 drug-naive, de novo PD patients and 30 matched controls with constraint-based modeling of gut microbial communities derived from an independent, drug-naive PD cohort, and prospective data from the general population. Our key results are (1) longitudinal trajectory of metabolites associated with the interconversion of methionine and cysteine via cystathionine differed between PD patients and controls; (2) dopaminergic medication showed strong lipidomic signatures; (3) taurine-conjugated bile acids correlated with the severity of motor symptoms, while low levels of sulfated taurolithocholate were associated with PD incidence in the general population; and (4) computational modeling predicted changes in sulfur metabolism, driven by A. muciniphila and B. wadsworthia, which is consistent with the changed metabolome. The multi-omics integration reveals PD-specific patterns in microbial-host sulfur co-metabolism that may contribute to PD severity.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease/microbiology , Sulfur/metabolism , Aged , Female , Humans , Longitudinal Studies , Male , Middle Aged
14.
J Chromatogr A ; 1608: 460413, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31395359

ABSTRACT

Recent advances in metabolomics have enabled larger proportions of the human metabolome to be analyzed quantitatively. However, this usually requires the use of several chromatographic methods coupled to mass spectrometry to cover the wide range of polarity, acidity/basicity and concentration of metabolites. Chemical derivatization allows in principle a wide coverage in a single method, as it affects both the separation and the detection of metabolites: it increases retention, stabilizes the analytes and improves the sensitivity of the analytes. The majority of quantitative derivatization techniques for LC-MS in metabolomics react with amines, phenols and thiols; however, there are unfortunately very few methods that can target carboxylic acids at the same time, which contribute to a large proportion of the human metabolome. Here, we describe a derivatization technique which simultaneously labels carboxylic acids, thiols and amines using the reagent dimethylaminophenacyl bromide (DmPABr). We further improve the quantitation by employing isotope-coded derivatization (ICD), which uses internal standards derivatized with an isotopically-labelled reagent (DmPABr-D6). We demonstrate the ability to measure and quantify 64 central carbon and energy-related metabolites including amino acids, N-acetylated amino acids, metabolites from the TCA cycle and pyruvate metabolism, acylcarnitines and medium-/long-chain fatty acids. To demonstrate the applicability of the analytical approach, we analyzed urine and SUIT-2 cells utilizing a 15-minute single UPLC-MS/MS method in positive ionization mode. SUIT-2 cells exposed to rotenone showed definitive changes in 28 out of the 64 metabolites, including metabolites from all 7 classes mentioned. By realizing the full potential of DmPABr to derivatize and quantify amines and thiols in addition to carboxylic acids, we extended the coverage of the metabolome, producing a strong platform that can be further applied to a variety of biological studies.


Subject(s)
Carbon/chemistry , Carbon/metabolism , Amines/chemistry , Amines/metabolism , Amino Acids/analysis , Bromides/chemistry , Carbon/urine , Carboxylic Acids/analysis , Carboxylic Acids/metabolism , Cell Line , Chromatography, Liquid/methods , Humans , Metabolome , Metabolomics/methods , Tandem Mass Spectrometry/methods
15.
Microbiome ; 7(1): 75, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31092280

ABSTRACT

BACKGROUND: The human gut microbiome performs important functions in human health and disease. A classic example for host-gut microbial co-metabolism is host biosynthesis of primary bile acids and their subsequent deconjugation and transformation by the gut microbiome. To understand these system-level host-microbe interactions, a mechanistic, multi-scale computational systems biology approach that integrates the different types of omic data is needed. Here, we use a systematic workflow to computationally model bile acid metabolism in gut microbes and microbial communities. RESULTS: Therefore, we first performed a comparative genomic analysis of bile acid deconjugation and biotransformation pathways in 693 human gut microbial genomes and expanded 232 curated genome-scale microbial metabolic reconstructions with the corresponding reactions (available at https://vmh.life ). We then predicted the bile acid biotransformation potential of each microbe and in combination with other microbes. We found that each microbe could produce maximally six of the 13 secondary bile acids in silico, while microbial pairs could produce up to 12 bile acids, suggesting bile acid biotransformation being a microbial community task. To investigate the metabolic potential of a given microbiome, publicly available metagenomics data from healthy Western individuals, as well as inflammatory bowel disease patients and healthy controls, were mapped onto the genomes of the reconstructed strains. We constructed for each individual a large-scale personalized microbial community model that takes into account strain-level abundances. Using flux balance analysis, we found considerable variation in the potential to deconjugate and transform primary bile acids between the gut microbiomes of healthy individuals. Moreover, the microbiomes of pediatric inflammatory bowel disease patients were significantly depleted in their bile acid production potential compared with that of controls. The contributions of each strain to overall bile acid production potential across individuals were found to be distinct between inflammatory bowel disease patients and controls. Finally, bottlenecks limiting secondary bile acid production potential were identified in each microbiome model. CONCLUSIONS: This large-scale modeling approach provides a novel way of analyzing metagenomics data to accelerate our understanding of the metabolic interactions between the host and gut microbiomes in health and diseases states. Our models and tools are freely available to the scientific community.


Subject(s)
Bile Acids and Salts/metabolism , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/microbiology , Systems Biology , Genomics , Host-Pathogen Interactions , Humans , Inflammatory Bowel Diseases/metabolism , Lipid Metabolism , Metagenomics
16.
BMC Bioinformatics ; 20(Suppl 4): 140, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30999838

ABSTRACT

BACKGROUND: The interplay between metabolic processes and signalling pathways remains poorly understood. Global, detailed and comprehensive reconstructions of human metabolism and signalling pathways exist in the form of molecular maps, but they have never been integrated together. We aim at filling in this gap by integrating of both signalling and metabolic pathways allowing a visual exploration of multi-level omics data and study of cross-regulatory circuits between these processes in health and in disease. RESULTS: We combined two comprehensive manually curated network maps. Atlas of Cancer Signalling Network (ACSN), containing mechanisms frequently implicated in cancer; and ReconMap 2.0, a comprehensive reconstruction of human metabolic network. We linked ACSN and ReconMap 2.0 maps via common players and represented the two maps as interconnected layers using the NaviCell platform for maps exploration ( https://navicell.curie.fr/pages/maps_ReconMap%202.html ). In addition, proteins catalysing metabolic reactions in ReconMap 2.0 were not previously visually represented on the map canvas. This precluded visualisation of omics data in the context of ReconMap 2.0. We suggested a solution for displaying protein nodes on the ReconMap 2.0 map in the vicinity of the corresponding reaction or process nodes. This permits multi-omics data visualisation in the context of both map layers. Exploration and shuttling between the two map layers is possible using Google Maps-like features of NaviCell. The integrated networks ACSN-ReconMap 2.0 are accessible online and allows data visualisation through various modes such as markers, heat maps, bar-plots, glyphs and map staining. The integrated networks were applied for comparison of immunoreactive and proliferative ovarian cancer subtypes using transcriptomic, copy number and mutation multi-omics data. A certain number of metabolic and signalling processes specifically deregulated in each of the ovarian cancer sub-types were identified. CONCLUSIONS: As knowledge evolves and new omics data becomes more heterogeneous, gathering together existing domains of biology under common platforms is essential. We believe that an integrated ACSN-ReconMap 2.0 networks will help in understanding various disease mechanisms and discovery of new interactions at the intersection of cell signalling and metabolism. In addition, the successful integration of metabolic and signalling networks allows broader systems biology approach application for data interpretation and retrieval of intervention points to tackle simultaneously the key players coordinating signalling and metabolism in human diseases.


Subject(s)
Data Analysis , Genomics/methods , Metabolic Networks and Pathways , Neoplasms/genetics , Signal Transduction , Female , Humans , Software , Systems Biology
17.
Sci Rep ; 9(1): 1796, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741972

ABSTRACT

Parkinson's disease is a slowly progressive neurodegenerative disease characterised by dysfunction and death of selectively vulnerable midbrain dopaminergic neurons and the development of human in vitro cellular models of the disease is a major challenge in Parkinson's disease research. We constructed an automated cell culture platform optimised for long-term maintenance and monitoring of different cells in three dimensional microfluidic cell culture devices. The system can be flexibly adapted to various experimental protocols and features time-lapse imaging microscopy for quality control and electrophysiology monitoring to assess cellular activity. Using this system, we continuously monitored the differentiation of Parkinson's disease patient derived human neuroepithelial stem cells into midbrain specific dopaminergic neurons. Calcium imaging confirmed the electrophysiological activity of differentiated neurons and immunostaining confirmed the efficiency of the differentiation protocol. This system is the first example of an automated Organ-on-a-Chip culture and has the potential to enable a versatile array of in vitro experiments for patient-specific disease modelling.


Subject(s)
Dopaminergic Neurons/cytology , Lab-On-A-Chip Devices , Stem Cells/cytology , Automation , Cells, Cultured , Humans , Software
18.
Adv Sci (Weinh) ; 6(1): 1800927, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30643711

ABSTRACT

Parkinson's disease (PD)-specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient-specific neurons, derived from induced pluripotent stem cells carrying the LRRK2-G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease-relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High-content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2-G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2-G2019S-dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2-G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development.

19.
Brief Bioinform ; 20(2): 659-670, 2019 03 25.
Article in English | MEDLINE | ID: mdl-29688273

ABSTRACT

The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regulatory network pathways represented in standard formats. The involvement of domain experts ensures that the key disease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the future development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps that encode common human disease mechanisms; providing technical solutions for complexity management of maps; and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling approaches, as one of the main goals of disease map development is the generation of mathematically interpretable representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting clinical decisions.


Subject(s)
Gene Regulatory Networks , Genetic Predisposition to Disease , Computational Biology , Humans , Models, Statistical , Translational Research, Biomedical
20.
Bioinformatics ; 35(13): 2332-2334, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30462168

ABSTRACT

MOTIVATION: The application of constraint-based modeling to functionally analyze metagenomic data has been limited so far, partially due to the absence of suitable toolboxes. RESULTS: To address this gap, we created a comprehensive toolbox to model (i) microbe-microbe and host-microbe metabolic interactions, and (ii) microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data. The Microbiome Modeling Toolbox extends the functionality of the constraint-based reconstruction and analysis toolbox. AVAILABILITY AND IMPLEMENTATION: The Microbiome Modeling Toolbox and the tutorials at https://git.io/microbiomeModelingToolbox.


Subject(s)
Microbiota , Microbial Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...