Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 22(3): e3002552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502677

ABSTRACT

Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.


Subject(s)
DNA Replication , DNA, Single-Stranded , Humans , DNA, Single-Stranded/genetics , DNA Replication/genetics , Replication Protein A/genetics , Replication Protein A/metabolism , Protein Binding , Ubiquitination , DNA Damage , Genomic Instability , DNA Helicases/genetics , DNA Helicases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
PLoS Biol ; 20(10): e3001543, 2022 10.
Article in English | MEDLINE | ID: mdl-36215310

ABSTRACT

Helix-destabilizing DNA lesions induced by environmental mutagens such as UV light cause genomic instability by strongly blocking the progression of DNA replication forks (RFs). At blocked RF, single-stranded DNA (ssDNA) accumulates and is rapidly bound by Replication Protein A (RPA) complexes. Such stretches of RPA-ssDNA constitute platforms for recruitment/activation of critical factors that promote DNA synthesis restart. However, during periods of severe replicative stress, RPA availability may become limiting due to inordinate sequestration of this multifunctional complex on ssDNA, thereby negatively impacting multiple vital RPA-dependent processes. Here, we performed a genome-wide screen to identify factors that restrict the accumulation of RPA-ssDNA during UV-induced replicative stress. While this approach revealed some expected "hits" acting in pathways such as nucleotide excision repair, translesion DNA synthesis, and the intra-S phase checkpoint, it also identified SCAI, whose role in the replicative stress response was previously unappreciated. Upon UV exposure, SCAI knock-down caused elevated accumulation of RPA-ssDNA during S phase, accompanied by reduced cell survival and compromised RF progression. These effects were independent of the previously reported role of SCAI in 53BP1-dependent DNA double-strand break repair. We also found that SCAI is recruited to UV-damaged chromatin and that its depletion promotes nascent DNA degradation at stalled RF. Finally, we (i) provide evidence that EXO1 is the major nuclease underlying ssDNA formation and DNA replication defects in SCAI knockout cells and, consistent with this, (ii) demonstrate that SCAI inhibits EXO1 activity on a ssDNA gap in vitro. Taken together, our data establish SCAI as a novel regulator of the UV-induced replicative stress response in human cells.


Subject(s)
DNA, Single-Stranded , Replication Protein A , Humans , Replication Protein A/genetics , Replication Protein A/metabolism , DNA, Single-Stranded/genetics , Ultraviolet Rays/adverse effects , DNA Replication/genetics , Chromatin , DNA , Mutagens
3.
Nucleic Acids Res ; 49(2): 928-953, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33406258

ABSTRACT

Double-strand breaks and stalled replication forks are a significant threat to genomic stability that can lead to chromosomal rearrangements or cell death. The protein CtIP promotes DNA end resection, an early step in homologous recombination repair, and has been found to protect perturbed forks from excessive nucleolytic degradation. However, it remains unknown how CtIP's function in fork protection is regulated. Here, we show that CtIP recruitment to sites of DNA damage and replication stress is impaired upon global inhibition of SUMOylation. We demonstrate that CtIP is a target for modification by SUMO-2 and that this occurs constitutively during S phase. The modification is dependent on the activities of cyclin-dependent kinases and the PI-3-kinase-related kinase ATR on CtIP's carboxyl-terminal region, an interaction with the replication factor PCNA, and the E3 SUMO ligase PIAS4. We also identify residue K578 as a key residue that contributes to CtIP SUMOylation. Functionally, a CtIP mutant where K578 is substituted with a non-SUMOylatable arginine residue is defective in promoting DNA end resection, homologous recombination, and in protecting stalled replication forks from excessive nucleolytic degradation. Our results shed further light on the tightly coordinated regulation of CtIP by SUMOylation in the maintenance of genome stability.


Subject(s)
DNA End-Joining Repair/physiology , DNA Replication , Endodeoxyribonucleases/physiology , Protein Processing, Post-Translational , Sumoylation , Amino Acid Substitution , Arginine/chemistry , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Cyclin-Dependent Kinases/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Genes, Reporter , Genomic Instability , Humans , Lysine/chemistry , Poly-ADP-Ribose Binding Proteins/physiology , Proliferating Cell Nuclear Antigen/metabolism , Protein Inhibitors of Activated STAT/physiology , Protein Interaction Mapping , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Recombinant Fusion Proteins/metabolism , Recombinational DNA Repair/genetics , Recombinational DNA Repair/physiology
4.
Cell Rep ; 34(1): 108565, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33406426

ABSTRACT

The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , MRE11 Homologue Protein/metabolism , Nuclear Proteins/metabolism , Nucleic Acid Denaturation , RNA Polymerase II/metabolism , RNA, Long Noncoding/biosynthesis , Transcription, Genetic , Acid Anhydride Hydrolases/genetics , Cell Cycle Proteins/genetics , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA-Binding Proteins/genetics , HeLa Cells , Humans , MRE11 Homologue Protein/genetics , Mutation , Nuclear Proteins/genetics , RNA Polymerase II/genetics , RNA, Long Noncoding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Trends Biochem Sci ; 45(9): 779-793, 2020 09.
Article in English | MEDLINE | ID: mdl-32513599

ABSTRACT

DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly channel the resected DNA to the appropriate DNA repair pathway. Herein, we review the mechanisms of regulation of DNA resection, with an emphasis on negative regulators that prevent single-strand (ss)DNA accumulation to maintain genome stability. Interest in targeting DNA resection inhibitors is emerging because their inactivation leads to poly(ADP-ribose) polymerase inhibitor (PARPi) resistance. We also present detailed regulation of DNA resection machineries, their analysis by functional assays, and their impact on disease and PARPi resistance.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism
6.
Nature ; 563(7732): 522-526, 2018 11.
Article in English | MEDLINE | ID: mdl-30464262

ABSTRACT

Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.


Subject(s)
BRCA1 Protein/deficiency , Cytoplasmic Dyneins/metabolism , DNA/metabolism , Genes, BRCA1 , MRE11 Homologue Protein/metabolism , Recombinational DNA Repair , BRCA1 Protein/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Chromosome Aberrations , DNA Damage/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Editing , Genomic Instability/drug effects , Homologous Recombination/drug effects , Humans , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Binding , Recombinational DNA Repair/drug effects , Transcription Factors/metabolism
7.
Methods Enzymol ; 601: 205-241, 2018.
Article in English | MEDLINE | ID: mdl-29523233

ABSTRACT

For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.


Subject(s)
Drug Design , MRE11 Homologue Protein/antagonists & inhibitors , Allosteric Regulation , Amino Acid Sequence , Endonucleases/antagonists & inhibitors , Endonucleases/metabolism , Evolution, Molecular , Exonucleases/antagonists & inhibitors , Exonucleases/metabolism , Humans , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Protein Conformation , Sensitivity and Specificity , Sequence Alignment , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...