Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36511598

ABSTRACT

MOTIVATION: Since early 2020, the coronavirus disease 2019 (COVID-19) pandemic has confronted the biomedical community with an unprecedented challenge. The rapid spread of COVID-19 and ease of transmission seen worldwide is due to increased population flow and international trade. Front-line medical care, treatment research and vaccine development also require rapid and informative interpretation of the literature and COVID-19 data produced around the world, with 177 500 papers published between January 2020 and November 2021, i.e. almost 8500 papers per month. To extract knowledge and enable interoperability across resources, we developed the COVID-19 Vocabulary (COVoc), an application ontology related to the research on this pandemic. The main objective of COVoc development was to enable seamless navigation from biomedical literature to core databases and tools of ELIXIR, a European-wide intergovernmental organization for life sciences. RESULTS: This collaborative work provided data integration into SIB Literature services, an application ontology (COVoc) and a triage service named COVTriage and based on annotation processing to search for COVID-related information across pre-defined aspects with daily updates. Thanks to its interoperability potential, COVoc lends itself to wider applications, hopefully through further connections with other novel COVID-19 ontologies as has been established with Coronavirus Infectious Disease Ontology. AVAILABILITY AND IMPLEMENTATION: The data at https://github.com/EBISPOT/covoc and the service at https://candy.hesge.ch/COVTriage.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Triage , Commerce , Internationality
2.
J Biomed Semantics ; 13(1): 25, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271389

ABSTRACT

BACKGROUND: The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020. RESULTS: As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CONCLUSION: CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.


Subject(s)
COVID-19 , Communicable Diseases , Coronavirus , Vaccines , Humans , SARS-CoV-2 , Pandemics , Amino Acids , COVID-19 Drug Treatment
3.
CEUR Workshop Proc ; 3073: 122-127, 2022.
Article in English | MEDLINE | ID: mdl-37324543

ABSTRACT

Ontologies have emerged to become critical to support data and knowledge representation, standardization, integration, and analysis. The SARS-CoV-2 pandemic led to the rapid proliferation of COVID-19 data, as well as the development of many COVID-19 ontologies. In the interest of supporting data interoperability, we initiated a community-based effort to harmonize COVID-19 ontologies. Our effort involves the collaborative discussion among developers of seven COVID-19 related ontologies, and the merging of four ontologies. This effort demonstrates the feasibility of harmonizing these ontologies in an interoperable framework to support integrative representation and analysis of COVID-19 related data and knowledge.

4.
Nucleic Acids Res ; 49(D1): D1311-D1320, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33045747

ABSTRACT

Open Targets Genetics (https://genetics.opentargets.org) is an open-access integrative resource that aggregates human GWAS and functional genomics data including gene expression, protein abundance, chromatin interaction and conformation data from a wide range of cell types and tissues to make robust connections between GWAS-associated loci, variants and likely causal genes. This enables systematic identification and prioritisation of likely causal variants and genes across all published trait-associated loci. In this paper, we describe the public resources we aggregate, the technology and analyses we use, and the functionality that the portal offers. Open Targets Genetics can be searched by variant, gene or study/phenotype. It offers tools that enable users to prioritise causal variants and genes at disease-associated loci and access systematic cross-disease and disease-molecular trait colocalization analysis across 92 cell types and tissues including the eQTL Catalogue. Data visualizations such as Manhattan-like plots, regional plots, credible sets overlap between studies and PheWAS plots enable users to explore GWAS signals in depth. The integrated data is made available through the web portal, for bulk download and via a GraphQL API, and the software is open source. Applications of this integrated data include identification of novel targets for drug discovery and drug repurposing.


Subject(s)
Databases, Genetic , Genome, Human , Inflammatory Bowel Diseases/genetics , Molecular Targeted Therapy/methods , Quantitative Trait Loci , Software , Chromatin/chemistry , Chromatin/metabolism , Datasets as Topic , Drug Discovery/methods , Drug Repositioning/methods , Genome-Wide Association Study , Genotype , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Internet , Phenotype , Quantitative Trait, Heritable
5.
J Alzheimers Dis ; 75(4): 1417-1435, 2020.
Article in English | MEDLINE | ID: mdl-32417785

ABSTRACT

BACKGROUND: Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, for example from genome-wide association studies, applied universally across biological fields, including Alzheimer's disease (AD) research. OBJECTIVE: We aim to demonstrate the applicability of GO for interpretation of AD datasets to improve the understanding of the underlying molecular disease mechanisms, including the involvement of inflammatory pathways and dysregulated microRNAs (miRs). METHODS: We have undertaken a systematic full article GO annotation approach focused on microglial proteins implicated in AD and the miRs regulating their expression. PANTHER was used for enrichment analysis of previously published AD data. Cytoscape was used for visualizing and analyzing miR-target interactions captured from published experimental evidence. RESULTS: We contributed 3,084 new annotations for 494 entities, i.e., on average six new annotations per entity. This included a total of 1,352 annotations for 40 prioritized microglial proteins implicated in AD and 66 miRs regulating their expression, yielding an average of twelve annotations per prioritized entity. The updated GO resource was then used to re-analyze previously published data. The re-analysis showed novel processes associated with AD-related genes, not identified in the original study, such as 'gliogenesis', 'regulation of neuron projection development', or 'response to cytokine', demonstrating enhanced applicability of GO for neuroscience research. CONCLUSIONS: This study highlights ongoing development of the neurobiological aspects of GO and demonstrates the value of biocuration activities in the area, thus helping to delineate the molecular bases of AD to aid the development of diagnostic tools and treatments.


Subject(s)
Alzheimer Disease/genetics , Encephalitis/genetics , Gene Expression , Gene Ontology , Computational Biology/methods , Humans , Microglia/metabolism , Molecular Sequence Annotation/methods
6.
Nucleic Acids Res ; 48(D1): D704-D715, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31701156

ABSTRACT

In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.


Subject(s)
Computational Biology/methods , Genotype , Phenotype , Algorithms , Animals , Biological Ontologies , Databases, Genetic , Exome , Genetic Association Studies , Genetic Variation , Genomics , Humans , Internet , Software , Translational Research, Biomedical , User-Computer Interface
7.
Genes (Basel) ; 9(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501127

ABSTRACT

The analysis and interpretation of high-throughput datasets relies on access to high-quality bioinformatics resources, as well as processing pipelines and analysis tools. Gene Ontology (GO, geneontology.org) is a major resource for gene enrichment analysis. The aim of this project, funded by the Alzheimer's Research United Kingdom (ARUK) foundation and led by the University College London (UCL) biocuration team, was to enhance the GO resource by developing new neurological GO terms, and use GO terms to annotate gene products associated with dementia. Specifically, proteins and protein complexes relevant to processes involving amyloid-beta and tau have been annotated and the resulting annotations are denoted in GO databases as 'ARUK-UCL'. Biological knowledge presented in the scientific literature was captured through the association of GO terms with dementia-relevant protein records; GO itself was revised, and new GO terms were added. This literature biocuration increased the number of Alzheimer's-relevant gene products that were being associated with neurological GO terms, such as 'amyloid-beta clearance' or 'learning or memory', as well as neuronal structures and their compartments. Of the total 2055 annotations that we contributed for the prioritised gene products, 526 have associated proteins and complexes with neurological GO terms. To ensure that these descriptive annotations could be provided for Alzheimer's-relevant gene products, over 70 new GO terms were created. Here, we describe how the improvements in ontology development and biocuration resulting from this initiative can benefit the scientific community and enhance the interpretation of dementia data.

8.
Circ Genom Precis Med ; 11(2): e001813, 2018 02.
Article in English | MEDLINE | ID: mdl-29440116

ABSTRACT

BACKGROUND: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. METHODS AND RESULTS: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. CONCLUSIONS: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects.


Subject(s)
Gene Ontology , Heart Diseases , Proteomics , Computational Biology , Databases, Genetic , Heart , Heart Diseases/genetics , Humans , Molecular Sequence Annotation , Phenotype
9.
Autophagy ; 14(3): 419-436, 2018.
Article in English | MEDLINE | ID: mdl-29455577

ABSTRACT

Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of 'annotations' that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study.


Subject(s)
Autophagy/genetics , Databases, Genetic , Gene Ontology , Parkinson Disease/genetics , Animals , Humans , Molecular Sequence Annotation , Proteins/metabolism
10.
Cilia ; 6: 10, 2017.
Article in English | MEDLINE | ID: mdl-29177046

ABSTRACT

BACKGROUND: Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. METHODS: Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. RESULTS: So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. CONCLUSIONS: Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO.

11.
Front Cell Neurosci ; 10: 110, 2016.
Article in English | MEDLINE | ID: mdl-27199664

ABSTRACT

Huntington's disease (HD) is a fatal, dominantly inherited, neurodegenerative disorder due to a pathological expansion of the CAG repeat in the coding region of the HTT gene. In the quest for understanding the molecular basis of neurodegeneration, we have previously demonstrated that the prolyl isomerase Pin1 plays a crucial role in mediating p53-dependent apoptosis triggered by mutant huntingtin (mHtt) in vitro. To assess the effects of the lack of Pin1 in vivo, we have bred Pin1 knock-out mice with Hdh(Q111) knock-in mice, a genetically precise model of HD. We show that Pin1 genetic ablation modifies a portion of Hdh(Q111) phenotypes in a time-dependent fashion. As an early event, Pin1 activity reduces the DNA damage response (DDR). In midlife mice, by taking advantage of next-generation sequencing technology, we show that Pin1 activity modulates a portion of the alterations triggered by mHtt, extending the role of Pin1 to two additional Hdh(Q111) phenotypes: the unbalance in the "synthesis/concentration of hormones", as well as the alteration of "Wnt/ß-catenin signaling". In aging animals, Pin1 significantly increases the number of mHtt-positive nuclear inclusions while it reduces gliosis. In summary, this work provides further support for a role of Pin1 in HD pathogenesis.

12.
J Biomed Semantics ; 7: 19, 2016.
Article in English | MEDLINE | ID: mdl-27076901

ABSTRACT

BACKGROUND: To address the lack of standard terminology to describe extracellular RNA (exRNA) data/metadata, we have launched an inter-community effort to extend the Gene Ontology (GO) with subcellular structure concepts relevant to the exRNA domain. By extending GO in this manner, the exRNA data/metadata will be more easily annotated and queried because it will be based on a shared set of terms and relationships relevant to extracellular research. METHODS: By following a consensus-building process, we have worked with several academic societies/consortia, including ERCC, ISEV, and ASEMV, to identify and approve a set of exRNA and extracellular vesicle-related terms and relationships that have been incorporated into GO. In addition, we have initiated an ongoing process of extractions of gene product annotations associated with these terms from Vesiclepedia and ExoCarta, conversion of the extracted annotations to Gene Association File (GAF) format for batch submission to GO, and curation of the submitted annotations by the GO Consortium. As a use case, we have incorporated some of the GO terms into annotations of samples from the exRNA Atlas and implemented a faceted search interface based on such annotations. RESULTS: We have added 7 new terms and modified 9 existing terms (along with their synonyms and relationships) to GO. Additionally, 18,695 unique coding gene products (mRNAs and proteins) and 963 unique non-coding gene products (ncRNAs) which are associated with the terms: "extracellular vesicle", "extracellular exosome", "apoptotic body", and "microvesicle" were extracted from ExoCarta and Vesiclepedia. These annotations are currently being processed for submission to GO. CONCLUSIONS: As an inter-community effort, we have made a substantial update to GO in the exRNA context. We have also demonstrated the utility of some of the new GO terms for sample annotation and metadata search.


Subject(s)
Extracellular Vesicles/genetics , Gene Ontology , RNA/genetics , Databases, Genetic , Humans , Molecular Sequence Annotation , Web Browser
13.
BMC Genomics ; 16: 876, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26510930

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic nature of the disease. Identifying genes and pathways altered in living patients provide new information on the diagnosis and pathogenesis of sporadic PD. METHODS: Changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls ("Discovery set") were analyzed by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms and before initiating any pharmacological treatment. Data analysis was performed by applying Ranking-Principal Component Analysis, PUMA and Significance Analysis of Microarrays. Functional annotations were assigned using GO, DAVID, GSEA to unveil significant enriched biological processes in the differentially expressed genes. The expressions of selected genes were validated using RT-qPCR and samples from an independent cohort of 12 patients and controls ("Validation set"). RESULTS: Gene expression profiling of blood samples discriminates PD patients from healthy controls and identifies differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin remodeling and methylation. Candidate transcripts as CBX5, TCF3, MAN1C1 and DOCK10 were validated by RT-qPCR. CONCLUSIONS: Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD suggesting epigenetics as target for therapeutic intervention.


Subject(s)
Parkinson Disease/genetics , Transcriptome/genetics , Aged , Chromobox Protein Homolog 5 , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction
14.
BMC Bioinformatics ; 16: 186, 2015 Jun 06.
Article in English | MEDLINE | ID: mdl-26047810

ABSTRACT

BACKGROUND: People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. RESULTS: In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. CONCLUSIONS: The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets.


Subject(s)
Autistic Disorder/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Physiological Phenomena , Gene Ontology , High-Throughput Nucleotide Sequencing/methods , Nerve Tissue Proteins/metabolism , Animals , Autistic Disorder/genetics , Autistic Disorder/psychology , Calcium-Binding Proteins , Cell Adhesion Molecules, Neuronal/genetics , Genome , Genomics/methods , Humans , Membrane Potentials/physiology , Mice , Models, Molecular , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules , Phenotype , Rats , Social Behavior , Synapses/physiology , Synaptic Potentials
15.
BMC Genomics ; 15: 729, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25164183

ABSTRACT

BACKGROUND: The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. RESULTS: By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. CONCLUSIONS: Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.


Subject(s)
Dopaminergic Neurons/metabolism , Gene Expression Regulation , Mesencephalon/cytology , Mesencephalon/metabolism , Odorants , Receptors, Odorant/genetics , Animals , Cell Line , Cluster Analysis , Dopaminergic Neurons/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Mice , Organ Specificity/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Receptors, Odorant/metabolism , Recombinant Proteins , Substantia Nigra/metabolism , Transcription, Genetic
16.
Gene ; 545(2): 282-9, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24835311

ABSTRACT

Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to "ribosomal stress" with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA.


Subject(s)
Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/metabolism , Phenotype , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Transcription, Genetic , Alternative Splicing , Cell Line , DNA Mutational Analysis , Gene Expression Regulation , Gene Order , Humans , Molecular Sequence Annotation , Mutation , Reproducibility of Results , Ribosomal Proteins/deficiency , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
J Biomed Semantics ; 5: 48, 2014.
Article in English | MEDLINE | ID: mdl-25937883

ABSTRACT

BACKGROUND: Biological ontologies are continually growing and improving from requests for new classes (terms) by biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology developers struggle to keep up, while manually processing these requests and create classes. RESULTS: TermGenie allows biocurators to generate new classes based on formally specified design patterns or templates. The system is web-based and can be accessed by any authorized curator through a web browser. Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes. In the last 4 years the Gene Ontology TermGenie generated 4715 new classes, about 51.4% of all new classes created. The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes. CONCLUSION: TermGenie is a web-based class-generation system that complements traditional ontology development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the system is simple and intuitive and can be used by most biocurators without extensive training.

18.
J Biomed Semantics ; 4(1): 20, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24093723

ABSTRACT

BACKGROUND: The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. DESCRIPTION: Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. CONCLUSIONS: In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community.

19.
Stem Cell Reports ; 1(2): 123-38, 2013.
Article in English | MEDLINE | ID: mdl-24052948

ABSTRACT

The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.


Subject(s)
Astrocytes/metabolism , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Glioblastoma/radiotherapy , Neural Stem Cells/radiation effects , Signal Transduction , Animals , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , DNA Damage , Humans , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/radiation effects , SOXB1 Transcription Factors/metabolism , Signal Transduction/radiation effects
20.
PLoS One ; 8(8): e73621, 2013.
Article in English | MEDLINE | ID: mdl-23951361

ABSTRACT

In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.


Subject(s)
Action Potentials , Nanotubes, Carbon , Neurons/cytology , Neurons/physiology , Tissue Scaffolds , Animals , Cell Adhesion , Cell Culture Techniques , Cell Differentiation , Gene Expression Profiling , Gene Expression Regulation , Molecular Sequence Annotation , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Rats , Spinal Cord/cytology , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...