Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Kidney Int Rep ; 9(5): 1458-1472, 2024 May.
Article in English | MEDLINE | ID: mdl-38707825

ABSTRACT

Introduction: Sugarcane workers are exposed to potentially hazardous agrochemicals, including pesticides, heavy metals, and silica. Such occupational exposures present health risks and have been implicated in a high rate of kidney disease seen in these workers. Methods: To investigate potential biomarkers and mechanisms that could explain chronic kidney disease (CKD) among this worker population, paired urine samples were collected from sugarcane cutters at the beginning and end of a harvest season in Guatemala. Workers were then separated into 2 groups, namely those with or without kidney function decline (KFD) across the harvest season. Urine samples from these 2 groups underwent elemental analysis and untargeted metabolomics. Results: Urine profiles demonstrated increases in silicon, certain pesticides, and phosphorus levels in all workers, whereas heavy metals remained low. The KFD group had a reduction in estimated glomerular filtration rate (eGFR) across the harvest season; however, kidney injury marker 1 did not significantly change. Cross-harvest metabolomic analysis found trends of fatty acid accumulation, perturbed amino acid metabolism, presence of pesticides, and other known signs of impaired kidney function. Conclusion: Silica and certain pesticides were significantly elevated in the urine of sugarcane workers with or without KFD. Future work should determine whether long-term occupational exposure to silica and pesticides across multiple seasons contributes to CKD in these workers. Overall, these results confirmed that multiple exposures are occurring in sugarcane workers and may provide insight into early warning signs of kidney injury and may help explain the increased incidence of CKD among agricultural workers.

2.
Inhal Toxicol ; : 1-16, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349733

ABSTRACT

Sugarcane is the most widely cultivated crop in the world, with equatorial developing nations performing most of this agriculture. Burning sugarcane is a common practice to facilitate harvest, producing extremely high volumes of respirable particulate matter in the process. These emissions are known to have deleterious effects on agricultural workers and nearby communities, but the extent of this exposure and potential toxicity remain poorly characterized. As the epidemicof chronic kidney disease of an unknown etiology (CKDu) and its associated mortality continue to increase along with respiratory distress, there is an urgent need to investigate the causes, determine viable interventions to mitigate disease andimprove outcomes for groups experiencing disproportionate impact. The goal of this review is to establish the state of available literature, summarize what is known in terms of human health risk, and provide recommendations for what areas should be prioritized in research.

3.
Article in English | MEDLINE | ID: mdl-38234297

ABSTRACT

Background. Silica nanoparticles found in sugarcane ash have been postulated to be a toxicant contributing to chronic kidney disease of unknown etiology (CKDu). However, while the administration of manufactured silica nanoparticles is known to cause chronic tubulointerstitial disease in rats, the effect of administering sugarcane ash on kidney pathology remains unknown. Here we investigate whether sugarcane ash can induce CKD in rats. Methods. Sugarcane ash was administered for 13 weeks into the nares of rats (5 mg/day for 5d/week), and blood, urine and kidney tissues were collected at 13 weeks (at the end of ash administration) and in a separate group of rats at 24 weeks (11 weeks after stopping ash administration). Kidney histology was evaluated, and inflammation and fibrosis (collagen deposition) measured. Results. Sugarcane ash exposure led to the accumulation of silica in the kidneys, lungs, liver and spleen of rats. Mild proteinuria developed although renal function was largely maintained. However, biopsies showed focal glomeruli with segmental glomerulosclerosis, and tubulointerstitial inflammation and fibrosis that tended to worsen even after the ash administration had been stopped. Staining for the lysosomal marker, LAMP-1, showed decreased staining in ash administered rats consistent with lysosomal activation. Conclusion. Sugarcane ash containing silica nanoparticles can cause CKD in rats.

5.
Environ Pollut ; 332: 121951, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37301454

ABSTRACT

Multiple epidemics of chronic kidney disease of an unknown etiology (CKDu) have emerged in agricultural communities around the world. Many factors have been posited as potential contributors, but a primary cause has yet to be identified and the disease is considered likely multifactorial. Sugarcane workers are largely impacted by disease leading to the hypothesis that exposure to sugarcane ash produced during the burning and harvest of sugarcane could contribute to CKDu. Estimated exposure levels of particles under 10 µm (PM10) have been found to be exceptionally high during this process, exceeding 100 µg/m3 during sugarcane cutting and averaging ∼1800 µg/m3 during pre-harvest burns. Sugarcane stalks consist of ∼80% amorphous silica and generate nano-sized silica particles (∼200 nm) following burning. A human proximal convoluted tubule (PCT) cell line was subjected to treatments ranging in concentration from 0.025 µg/mL to 25 µg/mL of sugarcane ash, desilicated sugarcane ash, sugarcane ash-derived silica nanoparticles (SAD SiNPs) or manufactured pristine 200 nm silica nanoparticles. The combination of heat stress and sugarcane ash exposure on PCT cell responses was also assessed. Following 6-48 h of exposure, mitochondrial activity and viability were found to be significantly reduced when exposed to SAD SiNPs at concentrations 2.5 µg/mL or higher. Oxygen consumption rate (OCR) and pH changes suggested significant alteration to cellular metabolism across treatments as early as 6 h following exposure. SAD SiNPs were found to inhibit mitochondrial function, reduce ATP generation, increase reliance on glycolysis, and reduce glycolytic reserve. Metabolomic analysis revealed several cellular energetics pathways (e.g., fatty acid metabolism, glycolysis, and TCA cycle) are significantly altered across ash-based treatments. Heat stress did not influence these responses. Such changes indicate that exposure to sugarcane ash and its derivatives can promote mitochondrial dysfunction and disrupt metabolic activity of human PCT cells.


Subject(s)
Nanoparticles , Saccharum , Humans , Silicon Dioxide/toxicity , Silicon Dioxide/analysis , Kidney/chemistry , Nanoparticles/toxicity , Cell Line
6.
Nephrol Dial Transplant ; 38(1): 41-48, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-34473287

ABSTRACT

Climate change should be of special concern for the nephrologist, as the kidney has a critical role in protecting the host from dehydration, but it is also a favorite target of heat stress and dehydration. Here we discuss how rising temperatures and extreme heat events may affect the kidney. The most severe presentation of heat stress is heat stroke, which can result in severe electrolyte disturbance and both acute and chronic kidney disease (CKD). However, lesser levels of heat stress also have multiple effects, including exacerbating kidney disease and precipitating cardiovascular events in subjects with established kidney disease. Heat stress can also increase the risk for kidney stones, cause multiple electrolyte abnormalities and induce both acute and chronic kidney disease. Recently there have been multiple epidemics of CKD of uncertain etiology in various regions of the world, including Mesoamerica, Sri Lanka, India and Thailand. There is increasing evidence that climate change and heat stress may play a contributory role in these conditions, although other causes, including toxins, could also be involved. As climate change worsens, the nephrologist should prepare for an increase in diseases associated with heat stress and dehydration.


Subject(s)
Heat Stress Disorders , Nephrology , Renal Insufficiency, Chronic , Humans , Climate Change , Dehydration/complications , Renal Insufficiency, Chronic/complications , Kidney , Heat Stress Disorders/complications
7.
J Diabetes Complications ; 36(6): 108203, 2022 06.
Article in English | MEDLINE | ID: mdl-35523653

ABSTRACT

OBJECTIVE: We examined changes in the excretion of various amino acids and in glycolysis and ketogenesis-related metabolites, during and after diabetic ketoacidosis (DKA) diagnosis, in youth with known or new onset type 1 diabetes (T1D). METHODS: Urine samples were collected from 40 youth with DKA (52% boys, mean age 11 ± 4 years, venous pH 7.2 ± 0.1, blood glucose 451 ± 163 mg/dL) at 3 time points: 0-8 h and 12-24 h after starting an insulin infusion, and 3 months after hospital discharge. Mixed-effects models evaluated the changes in amino acids and other metabolites in the urine. RESULTS: Concentrations of urine histidine, threonine, tryptophan, and leucine per creatinine were highest at 0-8 h (148.8 ± 23.5, 59.5 ± 12.3, 15.4 ± 1.4, and 24.5 ± 2.4% of urine creatinine, respectively), and significantly decreased over 3 months (p = 0.028, p = 0.027, p = 0.019, and p < 0.0001, respectively). Urine histidine, threonine, tryptophan, and leucine per urine creatinine decreased by 10.6 ± 19.2, 0.7 ± 0.9, 1.3 ± 0.9, and 0.5 ± 0.3-fold, respectively, between 0 and 8 h and 3 months. CONCLUSIONS: In our study, DKA was associated with profound aminoaciduria, suggestive of proximal tubular dysfunction analogous to Fanconi syndrome.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Diabetic Nephropathies , Adolescent , Amino Acids , Child , Creatinine , Diabetes Mellitus, Type 1/diagnosis , Diabetic Ketoacidosis/complications , Diabetic Nephropathies/complications , Diabetic Nephropathies/etiology , Female , Histidine , Humans , Leucine , Male , Threonine , Tryptophan
8.
Am J Physiol Renal Physiol ; 323(1): F48-F58, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35635324

ABSTRACT

Silica nanoparticles (SiNPs) released during the burning of sugarcane have been postulated to have a role in chronic kidney disease of unknown etiology. We tested the hypothesis that pristine SiNPs of the size present in sugarcane might cause chronic kidney injury when administered through the lung in rats. We administered 200- or 300-nm amorphous SiNPs twice weekly (4 mg/dose), or vehicle by oropharyngeal aspiration for 13 wk to rats followed by euthanasia after an additional 13 wk (26 wk total). Tissues were evaluated for the presence of SiNPs and evidence of histological injury. Both sizes of SiNPs caused kidney damage, with early tubular injury and inflammation (at week 13) that continued to inflammation and chronic fibrosis at week 26 despite discontinuation of the SiNP administration. Both sizes of SiNPs caused local inflammation in the lung and kidney and were detected in the serum and urine at week 13, and the 200-nm particles were also localized to the kidney with no evidence of retention of the 300-nm particles. At week 26, there was some clearance of the 200-nm silica from the kidneys, and urinary levels of SiNPs were reduced but still significant in both 200- and 300 nm-exposed rats. In conclusion, inhaled SiNPs cause chronic kidney injury that progresses despite stopping the SiNP administration. These findings support the hypothesis that human exposure to amorphous silica nanoparticles found in burned sugarcane fields could have a participatory role in chronic kidney disease of unknown etiology.NEW & NOTEWORTHY Inhalation of silica nanoparticles (SiNPs) released during the burning of sugarcane has been postulated to have a role in chronic kidney disease of unknown etiology (CKDu). We administered 200- and 300-nm amorphous SiNPs to rats by aspiration and observed kidney damage with tubular injury and inflammation that persisted even after stopping the SiNP exposure. These findings support the hypothesis that human exposure to SiNPs found in sugarcane ash could have a participatory role CKDu.


Subject(s)
Nanoparticles , Renal Insufficiency, Chronic , Animals , Inflammation/pathology , Lung/pathology , Nanoparticles/toxicity , Rats , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Silicon Dioxide/toxicity
9.
Kidney Int Rep ; 7(4): 797-809, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35497798

ABSTRACT

Introduction: Minimal change disease (MCD) is considered a podocyte disorder triggered by unknown circulating factors. Here, we hypothesized that the endothelial cell (EC) is also involved in MCD. Methods: We studied 45 children with idiopathic nephrotic syndrome (44 had steroid sensitive nephrotic syndrome [SSNS], and 12 had biopsy-proven MCD), 21 adults with MCD, and 38 healthy controls (30 children, 8 adults). In circulation, we measured products of endothelial glycocalyx (EG) degradation (syndecan-1, heparan sulfate [HS] fragments), HS proteoglycan cleaving enzymes (matrix metalloprotease-2 [MMP-2], heparanase activity), and markers of endothelial activation (von Willebrand factor [vWF], thrombomodulin) by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry. In human kidney tissue, we assessed glomerular EC (GEnC) activation by immunofluorescence of caveolin-1 (n = 11 MCD, n = 5 controls). In vitro, we cultured immortalized human GEnC with sera from control subjects and patients with MCD/SSNS sera in relapse (n = 5 per group) and performed Western blotting of thrombomodulin of cell lysates as surrogate marker of endothelial activation. Results: In circulation, median concentrations of all endothelial markers were higher in patients with active disease compared with controls and remained high in some patients during remission. In the MCD glomerulus, caveolin-1 expression was higher, in an endothelial-specific pattern, compared with controls. In cultured human GEnC, sera from children with MCD/SSNS in relapse increased thrombomodulin expression compared with control sera. Conclusion: Our data show that alterations involving the systemic and glomerular endothelium are nearly universal in patients with MCD and SSNS, and that GEnC can be directly activated by circulating factors present in the MCD/SSNS sera during relapse.

10.
J. bras. nefrol ; 43(4): 572-579, Dec. 2021. tab, graf
Article in English, Portuguese | LILACS | ID: biblio-1350906

ABSTRACT

Abstract Hyperuricemia is common in chronic kidney disease (CKD) and may be present in 50% of patients presenting for dialysis. Hyperuricemia can be secondary to impaired glomerular filtration rate (GFR) that occurs in CKD. However, hyperuricemia can also precede the development of kidney disease and predict incident CKD. Experimental studies of hyperuricemic models have found that both soluble and crystalline uric acid can cause significant kidney damage, characterized by ischemia, tubulointerstitial fibrosis, and inflammation. However, most Mendelian randomization studies failed to demonstrate a causal relationship between uric acid and CKD, and clinical trials have had variable results. Here we suggest potential explanations for the negative clinical and genetic findings, including the role of crystalline uric acid, intracellular uric acid, and xanthine oxidase activity in uric acid-mediated kidney injury. We propose future clinical trials as well as an algorithm for treatment of hyperuricemia in patients with CKD.


Resumo A hiperuricemia é comum na doença renal crônica (DRC) e pode estar presente em até 50% dos pacientes que se apresentam para diálise. A hiperuricemia pode ser secundária ao comprometimento da taxa de filtração glomerular (TFG) que ocorre na DRC. No entanto, ela também pode preceder o desenvolvimento da doença renal e mesmo prever uma DRC incidente. Estudos experimentais de modelos hiperuricêmicos descobriram que tanto o ácido úrico solúvel quanto o cristalino podem causar danos renais significativos, caracterizados por isquemia, fibrose tubulointersticial e inflamação. Entretanto, a maioria dos estudos de randomização Mendeliana falhou em demonstrar uma relação causal entre o ácido úrico e a DRC, e os ensaios clínicos têm apresentado resultados variáveis. Aqui sugerimos explicações potenciais para os achados clínicos e genéticos negativos, incluindo o papel do ácido úrico cristalino, do ácido úrico intracelular e da atividade da xantina oxidase na lesão renal mediada por ácido úrico. Propomos ensaios clínicos futuros, bem como um algoritmo para o tratamento de hiperuricemia em pacientes com DRC.


Subject(s)
Humans , Hyperuricemia/complications , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Uric Acid , Renal Dialysis , Glomerular Filtration Rate
11.
Pediatr Diabetes ; 22(7): 1031-1039, 2021 11.
Article in English | MEDLINE | ID: mdl-34435718

ABSTRACT

OBJECTIVE: Glomerular injury is a recognized complication of diabetic ketoacidosis (DKA), yet the tubular lesions are poorly understood. The aim of this prospective study was to evaluate the presence and reversibility of tubular injury during DKA in children with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Blood and urine samples were collected from 40 children with DKA (52% boys, mean age 11 ± 4 years, venous pH 7.2 ± 0.1, glucose 451 ± 163 mg/dL) at three timepoints: 0-8 and 12-24 h after starting insulin, and 3 months after discharge. Mixed-effects models evaluated the changes in tubular injury markers over time (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule 1 [KIM-1], and interleukin 18 [IL-18]). We also evaluated the relationships among the tubular injury biomarkers, copeptin, a vasopressin surrogate, and serum uric acid (SUA). RESULTS: Serum NGAL, KIM-1, and IL-18 were highest at 0-8 h (306.5 ± 45.9 ng/mL, 128.9 ± 10.1 pg/mL, and 564.3 ± 39.2 pg/mL, respectively) and significantly decreased over 3 months (p = 0.03, p = 0.01, and p < 0.001, respectively). There were strong relationships among increases in copeptin and SUA and rises in tubular injury biomarkers. At 0-8 h, participants with acute kidney injury (AKI) [17%] showed significantly higher concentrations of tubular injury markers, copeptin, and SUA. CONCLUSIONS: DKA was characterized by tubular injury, and the degree of injury associated with elevated copeptin and SUA. Tubular injury biomarkers, copeptin and SUA may be able to predict AKI in DKA.


Subject(s)
Acute Kidney Injury/etiology , Diabetes Mellitus, Type 1/complications , Diabetic Ketoacidosis/complications , Diabetic Nephropathies/complications , Kidney Tubules/physiopathology , Acute Kidney Injury/physiopathology , Adolescent , Biomarkers/blood , Child , Diabetic Ketoacidosis/physiopathology , Diabetic Nephropathies/physiopathology , Female , Glomerular Filtration Rate , Glycopeptides/blood , Humans , Male , Severity of Illness Index , Uric Acid/blood
12.
Cells ; 10(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34440885

ABSTRACT

Since activated macrophages express a functional folate receptor ß (FRß), targeting this macrophage population with folate-linked drugs could increase selectivity to treat inflammatory diseases. Using a macrophage-mediated anti-glomerular basement membrane (anti-GBM) glomerulonephritis (GN) in WKY rats, we investigated the effect of a novel folic acid-aminopterin (AMT) conjugate (EC2319) designed to intracellularly deliver AMT via the FR. We found that treatment with EC2319 significantly attenuated kidney injury and preserved renal function. Kidney protection with EC2319 was blocked by a folate competitor, indicating that its mechanism of action was specifically FRß-mediated. Notably, treatment with methotrexate (MTX), another folic acid antagonist related to AMT, did not protect from kidney damage. EC2319 reduced glomerular and interstitial macrophage infiltration and decreased M1 macrophage recruitment but not M2 macrophages. The expression of CCL2 and the pro-fibrotic cytokine TGF-ß were also reduced in nephritic glomeruli with EC2319 treatment. In EC2319-treated rats, there was a significant decrease in the deposition of collagens. In nephritic kidneys, FRß was expressed on periglomerular macrophages and macrophages present in the crescents, but its expression was not observed in normal kidneys. These data indicate that selectively targeting the activated macrophage population could represent a novel means for treating anti-GBM GN and other acute crescentic glomerulonephritis.


Subject(s)
Folate Receptor 2/metabolism , Glomerulonephritis/drug therapy , Glomerulonephritis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/metabolism , Aminopterin/chemistry , Aminopterin/therapeutic use , Animals , Fibrosis/drug therapy , Fibrosis/metabolism , Folic Acid/chemistry , Folic Acid/therapeutic use , Macrophages/drug effects , Methotrexate/therapeutic use , Rats
13.
J Bras Nefrol ; 43(4): 572-579, 2021.
Article in English, Portuguese | MEDLINE | ID: mdl-33704350

ABSTRACT

Hyperuricemia is common in chronic kidney disease (CKD) and may be present in 50% of patients presenting for dialysis. Hyperuricemia can be secondary to impaired glomerular filtration rate (GFR) that occurs in CKD. However, hyperuricemia can also precede the development of kidney disease and predict incident CKD. Experimental studies of hyperuricemic models have found that both soluble and crystalline uric acid can cause significant kidney damage, characterized by ischemia, tubulointerstitial fibrosis, and inflammation. However, most Mendelian randomization studies failed to demonstrate a causal relationship between uric acid and CKD, and clinical trials have had variable results. Here we suggest potential explanations for the negative clinical and genetic findings, including the role of crystalline uric acid, intracellular uric acid, and xanthine oxidase activity in uric acid-mediated kidney injury. We propose future clinical trials as well as an algorithm for treatment of hyperuricemia in patients with CKD.


Subject(s)
Hyperuricemia , Renal Insufficiency, Chronic , Glomerular Filtration Rate , Humans , Hyperuricemia/complications , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Uric Acid
14.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670975

ABSTRACT

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Subject(s)
Coumarins/pharmacology , Diet, Western/adverse effects , Fructokinases/antagonists & inhibitors , Kidney Diseases/prevention & control , Metabolic Syndrome/prevention & control , Animals , Coumarins/therapeutic use , Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Fructokinases/metabolism , Fructose/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolism , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , NF-E2-Related Factor 2 , Oxidative Stress , Protective Agents/pharmacology , Protective Agents/therapeutic use , Rats , Rats, Wistar
15.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: mdl-33320834

ABSTRACT

Subjects with obesity frequently have elevated serum vasopressin levels, noted by measuring the stable analog, copeptin. Vasopressin acts primarily to reabsorb water via urinary concentration. However, fat is also a source of metabolic water, raising the possibility that vasopressin might have a role in fat accumulation. Fructose has also been reported to stimulate vasopressin. Here, we tested the hypothesis that fructose-induced metabolic syndrome is mediated by vasopressin. Orally administered fructose, glucose, or high-fructose corn syrup increased vasopressin (copeptin) concentrations and was mediated by fructokinase, an enzyme specific for fructose metabolism. Suppressing vasopressin with hydration both prevented and ameliorated fructose-induced metabolic syndrome. The vasopressin effects were mediated by the vasopressin 1b receptor (V1bR), as V1bR-KO mice were completely protected, whereas V1a-KO mice paradoxically showed worse metabolic syndrome. The mechanism is likely mediated in part by de novo expression of V1bR in the liver that amplifies fructokinase expression in response to fructose. Thus, our studies document a role for vasopressin in water conservation via the accumulation of fat as a source of metabolic water. Clinically, they also suggest that increased water intake may be a beneficial way to both prevent or treat metabolic syndrome.


Subject(s)
Fructose/metabolism , Metabolic Syndrome/metabolism , Receptors, Vasopressin/metabolism , Vasopressins/metabolism , Animals , Disease Models, Animal , Drinking/physiology , Fructokinases/metabolism , Fructose/administration & dosage , Hep G2 Cells , Humans , Liver/metabolism , Male , Metabolic Syndrome/chemically induced , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Vasopressin/deficiency , Receptors, Vasopressin/genetics , Vasopressins/antagonists & inhibitors , Vasopressins/biosynthesis
16.
Oxid Med Cell Longev ; 2020: 8850266, 2020.
Article in English | MEDLINE | ID: mdl-33354281

ABSTRACT

Currently, there is the paradox of low water intake but increased intake of sugar-sweetened beverages (SB) in several populations; those habits are associated with an increased prevalence of metabolic derangements and greater chronic disease mortality. Persistent heat dehydration and increased SB intake stimulate the continued release of vasopressin and overactivation of the polyol-fructokinase pathway, synergizing each other, an effect partially mediated by oxidative stress. The objective of the present study was to evaluate whether water restriction concurrent with SB hydration can cause renal damage by stimulating similar pathways as heat dehydration. Three groups of male Wistar rats (n = 6) were fluid restricted; from 10 am to 12 pm animals could rehydrate with tap water (W), or sweetened beverages, one prepared with 11% of a fructose-glucose combination (SB), or with the noncaloric edulcorant stevia (ST). A normal control group of healthy rats was also studied. The animals were followed for 4 weeks. Markers of dehydration and renal damage were evaluated at the end of the study. Fluid restriction and water hydration mildly increased urine osmolality and induced a 15% fall in CrCl while increased the markers of tubular damage by NAG and KIM-1. Such changes were in association with a mild overexpression of V1a and V2 renal receptors, polyol fructokinase pathway overactivation, and increased renal oxidative stress with reduced expression of antioxidant enzymes. Hydration with SB significantly amplified those alterations, while in stevia hydrated rats, the changes were similar to the ones observed in water hydrated rats. These data suggest that current habits of hydration could be a risk factor in developing kidney damage.


Subject(s)
Kidney Diseases , Kidney/metabolism , Oxidative Stress/drug effects , Sugar-Sweetened Beverages/adverse effects , Animals , Dehydration/metabolism , Dehydration/pathology , Fructokinases/metabolism , Fructose/adverse effects , Fructose/pharmacology , Glucose/adverse effects , Glucose/pharmacology , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Rats , Rats, Wistar , Receptors, Vasopressin/metabolism
17.
Nutrients ; 12(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423124

ABSTRACT

The potential contribution of serum osmolarity in the modulation of blood pressure has not been evaluated. This study was done to examine the relationship between hyperosmolarity and hypertension in a five-year longitudinal design. We enrolled 10,157 normotensive subjects without diabetes who developed hypertension subsequently as determined by annual medical examination in St. Luke's International Hospital, Tokyo, between 2004 and 2009. High salt intake was defined as >12 g/day by a self-answered questionnaire and hyperosmolarity was defined as >293 mOsm/L serum osmolarity, calculated using serum sodium, fasting blood glucose, and blood urea nitrogen. Statistical analyses included adjustments for age, gender, body mass index, smoking, drinking alcohol, dyslipidemia, hyperuricemia, and chronic kidney disease. In the patients with normal osmolarity, the group with high salt intake had a higher cumulative incidence of hypertension than the group with normal salt intake (8.4% versus 6.7%, p = 0.023). In contrast, in the patients with high osmolarity, the cumulative incidence of hypertension was similar in the group with high salt intake and in the group with normal salt intake (13.1% versus 12.9%, p = 0.84). The patients with hyperosmolarity had a higher incidence of hypertension over five years compared to that of the normal osmolarity group (p < 0.001). After multiple adjustments, elevated osmolarity was an independent risk for developing hypertension (OR (odds ratio), 1.025; 95% CI (confidence interval), 1.006-1.044), regardless of the amount of salt intake. When analyzed in relation to each element of calculated osmolarity, serum sodium and fasting blood glucose were independent risks for developing hypertension. Our results suggest that hyperosmolarity is a risk for developing hypertension regardless of salt intake.


Subject(s)
Diet/adverse effects , Hypertension/etiology , Serum/chemistry , Sodium Chloride, Dietary/adverse effects , Sodium/blood , Adult , Aged , Aged, 80 and over , Blood Glucose/analysis , Blood Pressure , Blood Urea Nitrogen , Diet Surveys , Eating/physiology , Female , Heart Disease Risk Factors , Humans , Hypertension/epidemiology , Incidence , Japan/epidemiology , Longitudinal Studies , Male , Middle Aged , Odds Ratio , Osmolar Concentration , Retrospective Studies
18.
Am J Kidney Dis ; 76(1): 144-147, 2020 07.
Article in English | MEDLINE | ID: mdl-32387022

ABSTRACT

We report a case of a patient who developed dialysis-requiring acute kidney injury (AKI) after the use of canagliflozin. A 66-year-old man with type 2 diabetes who was recovering from left knee septic arthritis at a rehabilitation facility was admitted with oliguric AKI 5 days after starting treatment with canagliflozin, an inhibitor of sodium/glucose cotransporter 2 (SGLT2). The patient presented with hematuria, non-nephrotic-range proteinuria, and serum creatinine level of 6.8 (baseline, 1.1-1.3) mg/dL. There was no recent use of radiocontrast agents or exposure to other nephrotoxins. The patient subsequently required hemodialysis. Due to recent antibiotic use (ampicillin-sulbactam), acute interstitial nephritis was considered in the differential diagnosis. Kidney biopsy was performed, which showed the presence of osmotic nephropathy. The patient's kidney function returned to baseline after 2 weeks of hemodialysis. This case provides evidence of an association of osmotic nephropathy with the use of canagliflozin and discusses potential mechanisms. We recommend kidney biopsy for cases of severe AKI associated with SGLT2 inhibitors to better understand the relationship of this complication with the use of this class of medications.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnostic imaging , Canagliflozin/adverse effects , Nephrosis/chemically induced , Nephrosis/diagnostic imaging , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Acute Kidney Injury/metabolism , Aged , Diuretics, Osmotic/adverse effects , Humans , Male , Nephrosis/metabolism
19.
J Clin Med ; 9(4)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235468

ABSTRACT

The optimal range of serum uric acid (urate) associated with the lowest risk for developing cardiometabolic diseases is unknown in a generally healthy population. This 5-year cohort study is designed to identify the optimal range of serum urate. The data were collected from 13,070 Japanese between ages 30 and 85 at the baseline (2004) from the Center for Preventive Medicine, St. Luke's International Hospital, Tokyo. We evaluated the number of subjects (and prevalence) of those free of the following conditions: hypertension, diabetes, dyslipidemia, and chronic kidney disease (CKD) over 5 years for each 1 mg/dL of serum urate stratified by sex. Furthermore, the odds ratios (ORs) for remaining free of these conditions were calculated with multiple adjustments. Except for truly hypouricemic subjects, having lower serum urate was an independent factor for predicting the absence of hypertension, dyslipidemia, and CKD, but not diabetes. The OR of each 1 mg/dL serum urate decrease as a protective factor for hypertension, dyslipidemia, and CKD was 1.153 (95% confidence interval, 1.068-1.245), 1.164 (1.077-1.258), and 1.226 (1.152-1.306) in men; 1.306 (1.169-1.459), 1.121 (1.022-1.230), and 1.424 (1.311-1.547) in women, respectively. Moreover, comparing serum urate of 3-5 mg/dL in men and 2-4 mg/dL in women, hypouricemia could be a higher risk for developing hypertension (OR: 4.532; 0.943-21.78) and CKD (OR: 4.052; 1.181-13.90) in women, but not in men. The optimal serum urate range associated with the lowest development of cardiometabolic diseases was less than 5 mg/dL for men and 2-4 mg/dL for women, respectively.

20.
J Am Soc Nephrol ; 31(5): 898-906, 2020 05.
Article in English | MEDLINE | ID: mdl-32253274

ABSTRACT

Understanding fructose metabolism might provide insights to renal pathophysiology. To support systemic glucose concentration, the proximal tubular cells reabsorb fructose as a substrate for gluconeogenesis. However, in instances when fructose intake is excessive, fructose metabolism is costly, resulting in energy depletion, uric acid generation, inflammation, and fibrosis in the kidney. A recent scientific advance is the discovery that fructose can be endogenously produced from glucose under pathologic conditions, not only in kidney diseases, but also in diabetes, in cardiac hypertrophy, and with dehydration. Why humans have such a deleterious mechanism to produce fructose is unknown, but it may relate to an evolutionary benefit in the past. In this article, we aim to illuminate the roles of fructose as it relates to gluconeogenesis and fructoneogenesis in the kidney.


Subject(s)
Fructose/metabolism , Kidney/metabolism , Animals , Cardiomegaly/etiology , Cardiomegaly/metabolism , Diabetic Nephropathies/metabolism , Dietary Sugars/adverse effects , Dietary Sugars/pharmacokinetics , Energy Metabolism , Fatty Acids/biosynthesis , Fructose/adverse effects , Gluconeogenesis/physiology , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Tubules, Proximal/metabolism , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Postoperative Complications/etiology , Postoperative Complications/metabolism , Sorbitol/metabolism , Uric Acid/metabolism , Vertebrates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...