Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 23 Suppl: S42-51, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26235345

ABSTRACT

There is great clinical interest in cell-based therapies for ischemic tissue repair in cardiovascular disease. However, the regenerative potential of these therapies is limited due to poor cell viability and minimal retention following application. We report here the development of bioactive peptide amphiphile nanofibers displaying the fibronectin-derived RGDS cell adhesion epitope as a scaffold for therapeutic delivery of bone marrow derived stem and progenitor cells. When grown on flat substrates, a binary peptide amphiphile system consisting of 10 wt.% RGDS-containing molecules and 90 wt.% negatively charged diluent molecules was found to promote optimal cell adhesion. This binary system enhanced adhesion 1.4-fold relative to substrates composed of only the non-bioactive diluent. Additionally, no enhancement was found upon scrambling the epitope and adhesion was no longer enhanced upon adding soluble RGDS to the cell media, indicating RGDS-specific adhesion. When encapsulated within self-assembled scaffolds of the binary RGDS nanofibers in vitro, cells were found to be viable and proliferative, increasing in number by 5.5 times after only 5 days, an effect again lost upon adding soluble RGDS. Cells encapsulated within a non-bioactive scaffold and those within a binary scaffold with scrambled epitope showed minimal viability and no proliferation. Cells encapsulated within this RGDS nanofiber gel also increase in endothelial character, evident by a decrease in the expression of CD34 paired with an increase in the expression of endothelial-specific markers VE-Cadherin, VEGFR2 and eNOS after 5days. In an in vivo study, nanofibers and luciferase-expressing cells were co-injected subcutaneously in a mouse model. The binary RGDS material supported these cells in vivo, evident by a 3.2-fold increase in bioluminescent signal attributable to viable cells; this suggests the material has an anti-apoptotic and/or proliferative effect on the transplanted bone marrow cells. We conclude that the binary RGDS-presenting nanofibers developed here demonstrate enhanced viability, proliferation and adhesion of associated bone marrow derived stem and progenitor cells. This study suggests potential for this material as a scaffold to overcome current limitations of stem cell therapies for ischemic diseases.

2.
J Mol Cell Cardiol ; 74: 231-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25009075

ABSTRACT

The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.


Subject(s)
Bone Marrow Cells/cytology , Epitopes/metabolism , Fibronectins/metabolism , Ischemia/therapy , Nanofibers/administration & dosage , Peptides/administration & dosage , Animals , Biocompatible Materials , Bone Marrow Cells/metabolism , Cell Survival , Cell- and Tissue-Based Therapy/methods , Epitopes/chemistry , Fibronectins/chemistry , Gene Expression , Hindlimb/blood supply , Hindlimb/drug effects , Hindlimb/injuries , Integrins/metabolism , Ischemia/pathology , Male , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Nanofibers/chemistry , Neovascularization, Physiologic , Peptides/chemical synthesis , Peptides/metabolism , Protein Binding , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Microvasc Res ; 79(3): 200-6, 2010 May.
Article in English | MEDLINE | ID: mdl-20144623

ABSTRACT

Cell-based therapy has emerged as a promising therapeutic tool for treatment of ischemic cardiovascular disease. Both unselected bone marrow-derived mononuclear cells (BMNCs), which include stem/progenitor cells and several other cell types, and endothelial progenitor cells (EPCs), a subpopulation of BMNCs, display regenerative potential in ischemic tissue. Abundant evidence supports the involvement of EPCs in capillary growth, and EPCs also appear to participate in the formation of collateral vessels. Collectively, these effects have led to improved perfusion and functional recovery in animal models of myocardial and peripheral ischemia, and in early clinical trials, the therapeutic administration of EPCs to patients with myocardial infarction or chronic angina has been associated with positive trends in perfusion. EPCs also contribute to endothelial repair and may, consequently, impede the development or progression of arteriosclerosis. This review provides a brief summary of the preclinical and clinical evidence for the role of EPCs in blood-vessel formation and repair during ischemic cardiovascular disease.


Subject(s)
Collateral Circulation , Endothelial Cells , Endothelium, Vascular/physiopathology , Ischemia/physiopathology , Neovascularization, Physiologic , Stem Cells , Animals , Endothelial Cells/pathology , Endothelial Cells/transplantation , Endothelium, Vascular/pathology , Humans , Ischemia/pathology , Ischemia/surgery , Regeneration , Stem Cell Transplantation , Stem Cells/pathology
4.
Acta Biomater ; 6(1): 3-11, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19635599

ABSTRACT

There is great clinical interest in cell-based therapies for ischemic tissue repair in cardiovascular disease. However, the regenerative potential of these therapies is limited due to poor cell viability and minimal retention following application. We report here the development of bioactive peptide amphiphile nanofibers displaying the fibronectin-derived RGDS cell adhesion epitope as a scaffold for therapeutic delivery of bone marrow derived stem and progenitor cells. When grown on flat substrates, a binary peptide amphiphile system consisting of 10 wt.% RGDS-containing molecules and 90wt.% negatively charged diluent molecules was found to promote optimal cell adhesion. This binary system enhanced adhesion 1.4-fold relative to substrates composed of only the non-bioactive diluent. Additionally, no enhancement was found upon scrambling the epitope and adhesion was no longer enhanced upon adding soluble RGDS to the cell media, indicating RGDS-specific adhesion. When encapsulated within self-assembled scaffolds of the binary RGDS nanofibers in vitro, cells were found to be viable and proliferative, increasing in number by 5.5 times after only 5 days, an effect again lost upon adding soluble RGDS. Cells encapsulated within a non-bioactive scaffold and those within a binary scaffold with scrambled epitope showed minimal viability and no proliferation. Cells encapsulated within this RGDS nanofiber gel also increase in endothelial character, evident by a decrease in the expression of CD34 paired with an increase in the expression of endothelial-specific markers VE-Cadherin, VEGFR2 and eNOS after 5 days. In an in vivo study, nanofibers and luciferase-expressing cells were co-injected subcutaneously in a mouse model. The binary RGDS material supported these cells in vivo, evident by a 3.2-fold increase in bioluminescent signal attributable to viable cells; this suggests the material has an anti-apoptotic and/or proliferative effect on the transplanted bone marrow cells. We conclude that the binary RGDS-presenting nanofibers developed here demonstrate enhanced viability, proliferation and adhesion of associated bone marrow derived stem and progenitor cells. This study suggests potential for this material as a scaffold to overcome current limitations of stem cell therapies for ischemic diseases.


Subject(s)
Biocompatible Materials/chemistry , Peptides/chemistry , Tissue Engineering/methods , Animals , Apoptosis , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Adhesion , Cell Survival , Epitopes/chemistry , Fibronectins/chemistry , Male , Materials Testing , Mice , Mice, Transgenic , Nanofibers/chemistry , Nanotechnology/methods , Oligopeptides/chemistry
6.
Trends Biotechnol ; 26(5): 276-83, 2008 May.
Article in English | MEDLINE | ID: mdl-18359114

ABSTRACT

Endothelial progenitor cells (EPCs) are a heterogeneous subpopulation of bone marrow mononuclear cells that have an enhanced potential for differentiation within the endothelial cell lineage. In response to ischemic injury, EPCs are mobilized from the bone marrow to the peripheral circulation and home to the sites of new vessel growth, where they become incorporated into the growing vasculature. Thus, EPCs can be therapeutically useful for treating ischemic injury or for delivering anti-cancer agents to tumors.


Subject(s)
Endothelial Cells/cytology , Neoplasms/therapy , Regenerative Medicine/methods , Stem Cells/cytology , Animals , Biomedical Research/methods , Biomedical Research/trends , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/therapy , Endothelial Cells/physiology , Endothelial Cells/transplantation , Genetic Engineering/methods , Humans , Neoplasms/blood supply , Neoplasms/physiopathology , Neovascularization, Pathologic , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...