Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2170, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859181

ABSTRACT

Regulation of mRNA translation elongation impacts nascent protein synthesis and integrity and plays a critical role in disease establishment. Here, we investigate features linking regulation of codon-dependent translation elongation to protein expression and homeostasis. Using knockdown models of enzymes that catalyze the mcm5s2 wobble uridine tRNA modification (U34-enzymes), we show that gene codon content is necessary but not sufficient to predict protein fate. While translation defects upon perturbation of U34-enzymes are strictly dependent on codon content, the consequences on protein output are determined by other features. Specific hydrophilic motifs cause protein aggregation and degradation upon codon-dependent translation elongation defects. Accordingly, the combination of codon content and the presence of hydrophilic motifs define the proteome whose maintenance relies on U34-tRNA modification. Together, these results uncover the mechanism linking wobble tRNA modification to mRNA translation and aggregation to maintain proteome homeostasis.


Subject(s)
Amino Acids/chemistry , Multienzyme Complexes/metabolism , Peptide Chain Elongation, Translational , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , Amino Acids/genetics , Amino Acids/metabolism , Cell Line, Tumor , Codon Usage , Gene Knockdown Techniques , Humans , Hydrophobic and Hydrophilic Interactions , Multienzyme Complexes/genetics , Protein Aggregates/genetics , Proteolysis , Proteomics , RNA, Messenger/metabolism , RNA, Transfer/genetics , Uridine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...