Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 60(2): 465-482, 2024 04.
Article in English | MEDLINE | ID: mdl-38373045

ABSTRACT

Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).


Subject(s)
Cyanobacteria , Ecosystem , Chlorophyll A , Cyanobacteria/genetics , Genomics , Soil , Carotenoids
2.
Microb Genom ; 9(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37417735

ABSTRACT

Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.


Subject(s)
Cyanobacteria , Metagenomics , Cyanobacteria/genetics , Lakes/microbiology , Metagenome , Base Sequence
3.
Sci Total Environ ; 848: 157704, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35908695

ABSTRACT

Dryland soil degradation is increasing due to global change and traditional restoration methods are not successful due to water scarcity. Thus, an alternative technology based on inoculating biocrust-forming cyanobacteria on degraded soils has emerged. Biocrusts are communities of mosses, lichens, cyanobacteria or fungi that colonize soil surface forming a stable and fertile layer. Previous studies have shown the benefits of inoculating cyanobacteria to restore soils at a small scale. However, to face field restoration projects, it is necessary to produce high quantities of biomass at an affordable cost. In this work, we analyze if the previously tested cyanobacteria Scytonema hyalinum, Tolypothrix distorta (heterocystous strains) and Trichocoleus desertorum (a bundle-forming one) can be produced with agricultural fertilizers. Different culture media were used: two containing pure chemicals (BG11 and BG110, this N-free medium was used just for heterocystous strains) and two containing fertilizers (BG11-F and MM-F). The performance of the cultures was monitored by measuring the biomass concentration and photosynthetic stress. Afterwards, we analyzed their capacity to induce biocrusts and improve soil properties by inoculating the biomass on a mine substrate indoors and measuring, three months later, the albedo, chlorophyll a and organic carbon content. Results show that the bundle-forming cyanobacterium was unable to grow in the media tested, whereas both heterocystous cyanobacteria grew in all of them and induced the formation of biocrusts improving the organic carbon substrate content. The best results for S. hyalinum were found using the MM-F medium, and for T. distorta using a medium containing pure chemicals (BG11). However, results were also positive when using a medium containing fertilizers (BG11-F). Thus, agricultural fertilizers can be used to undertake the production of heterocystous cyanobacteria for large scale restoration in drylands. On the other hand, more research is needed to find sustainable techniques to produce biomass of bundle-forming cyanobacteria.


Subject(s)
Cyanobacteria , Desert Climate , Carbon , Chlorophyll A , Culture Media , Ecosystem , Fertilizers , Nitrogen Fixation , Soil/chemistry , Soil Microbiology
4.
PeerJ ; 7: e6169, 2019.
Article in English | MEDLINE | ID: mdl-30627491

ABSTRACT

Cyanobacteria are key microbes in topsoil communities that have important roles in preventing soil erosion, carbon and nitrogen fixation, and influencing soil hydrology. However, little is known regarding the identity and distribution of the microbial components in the photosynthetic assemblages that form a cohesive biological soil crust (biocrust) in drylands of Europe. In this study, we investigated the cyanobacterial species colonizing biocrusts in three representative dryland ecosystems from the most arid region in Europe (SE Spain) that are characterized by different soil conditions. Isolated cyanobacterial cultures were identified by a polyphasic approach, including 16S rRNA gene sequencing, phylogenetic relationship determination, and morphological and ecological habitat assessments. Three well-differentiated groups were identified: heterocystous-cyanobacteria (Nostoc commune, Nostoc calcicola, Tolypothrix distorta and Scytonema hyalinum), which play an important role in N and C cycling in soil; nonheterocystous bundle-forming cyanobacteria (Microcoleus steenstrupii, Trichocoleus desertorum, and Schizothrix cf. calcicola); and narrow filamentous cyanobacteria (Leptolyngbya frigida and Oculatella kazantipica), all of which are essential genera for initial biocrust formation. The results of this study contribute to our understanding of cyanobacterial species composition in biocrusts from important and understudied European habitats, such as the Mediterranean Basin, a hotspot of biodiversity, where these species are keystone pioneer organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...