Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989560

ABSTRACT

Precision dosing, the tailoring of drug doses to optimize therapeutic benefits and minimize risks in each patient, is essential for drugs with a narrow therapeutic window and severe adverse effects. Adaptive dosing strategies extend the precision dosing concept to time-varying treatments which require sequential dose adjustments based on evolving patient conditions. Reinforcement learning (RL) naturally fits this paradigm: it perfectly mimics the sequential decision-making process where clinicians adapt dose administration based on patient response and evolution monitoring. This paper aims to investigate the potentiality of coupling RL with population PK/PD models to develop precision dosing algorithms, reviewing the most relevant works in the field. Case studies in which PK/PD models were integrated within RL algorithms as simulation engine to predict consequences of any dosing action have been considered and discussed. They mainly concern propofol-induced anesthesia, anticoagulant therapy with warfarin and a variety of anticancer treatments differing for administered agents and/or monitored biomarkers. The resulted picture highlights a certain heterogeneity in terms of precision dosing approaches, applied methodologies, and degree of adherence to the clinical domain. In addition, a tutorial on how a precision dosing problem should be formulated in terms of the key elements composing the RL framework (i.e., system state, agent actions and reward function), and on how PK/PD models could enhance RL approaches is proposed for readers interested in delving in this field. Overall, the integration of PK/PD models into a RL-framework holds great promise for precision dosing, but further investigations and advancements are still needed to address current limitations and extend the applicability of this methodology to drugs requiring adaptive dosing strategies.

2.
Pharmaceutics ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931898

ABSTRACT

Understanding the pharmacokinetics, safety and efficacy of candidate drugs is crucial for their success. One key aspect is the characterization of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, which require early assessment in the drug discovery and development process. This study aims to present an innovative approach for predicting ADMET properties using attention-based graph neural networks (GNNs). The model utilizes a graph-based representation of molecules directly derived from Simplified Molecular Input Line Entry System (SMILE) notation. Information is processed sequentially, from substructures to the whole molecule, employing a bottom-up approach. The developed GNN is tested and compared with existing approaches using six benchmark datasets and by encompassing regression (lipophilicity and aqueous solubility) and classification (CYP2C9, CYP2C19, CYP2D6 and CYP3A4 inhibition) tasks. Results show the effectiveness of our model, which bypasses the computationally expensive retrieval and selection of molecular descriptors. This approach provides a valuable tool for high-throughput screening, facilitating early assessment of ADMET properties and enhancing the likelihood of drug success in the development pipeline.

3.
Biomedicines ; 11(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37189676

ABSTRACT

In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges.

SELECTION OF CITATIONS
SEARCH DETAIL
...