Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur J Pharmacol ; 917: 174750, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35032488

ABSTRACT

The mechanisms by which a high-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunction and redox imbalance. The functional loss of the enzyme NAD(P)+ transhydrogenase, a main source of mitochondrial NADPH, results in impaired mitochondrial peroxide removal, pyruvate dehydrogenase inhibition by phosphorylation, and progression of NAFLD in HFD-fed mice. The present study aimed to investigate whether pharmacological reactivation of pyruvate dehydrogenase by dichloroacetate attenuates the mitochondrial redox dysfunction and the development of NAFLD in NAD(P)+ transhydrogenase-null (Nnt-/-) mice fed an HFD (60% of total calories from fat). For this purpose, Nnt-/- mice and their congenic controls (Nnt+/+) were fed chow or an HFD for 20 weeks and received sodium dichloroacetate or NaCl in the final 12 weeks via drinking water. The results showed that HFD reduced the ability of isolated liver mitochondria from Nnt-/- mice to remove peroxide, which was prevented by the dichloroacetate treatment. HFD-fed mice of both Nnt genotypes exhibited increased body and liver mass, as well as a higher content of hepatic triglycerides, but dichloroacetate treatment attenuated these abnormalities only in Nnt-/- mice. Notably, dichloroacetate treatment decreased liver pyruvate dehydrogenase phosphorylation levels and prevented the aggravation of NAFLD in HFD-fed Nnt-/- mice. Conversely, dichloroacetate treatment elicited moderate hepatocyte ballooning in chow-fed mice, suggesting potentially toxic effects. We conclude that the protection against HFD-induced NAFLD by dichloroacetate is associated with its role in reactivating pyruvate dehydrogenase and reestablishing the pyruvate-supported liver mitochondrial capacity to handle peroxide in Nnt-/- mice.


Subject(s)
Non-alcoholic Fatty Liver Disease
2.
Arch Biochem Biophys ; 707: 108934, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34043997

ABSTRACT

H2O2 is endogenously generated and its removal in the matrix of skeletal muscle mitochondria (SMM) is dependent on NADPH likely provided by NAD(P)+ transhydrogenase (NNT) and isocitrate dehydrogenase (IDH2). Importantly, NNT activity is linked to mitochondrial protonmotive force. Here, we demonstrate the presence of NNT function in detergent-solubilized and intact functional SMM isolated from rats and wild type (Nnt+/+) mice, but not in SMM from congenic mice carrying a mutated NNT gene (Nnt-/-). Further comparisons between SMM from both Nnt mouse genotypes revealed that the NADPH supplied by NNT supports up to 600 pmol/mg/min of H2O2 removal under selected conditions. Surprisingly, SMM from Nnt-/- mice removed exogenous H2O2 at wild-type levels and exhibited a maintained or even decreased net emission of endogenous H2O2 when substrates that support Krebs cycle reactions were present (e.g., pyruvate plus malate or palmitoylcarnitine plus malate). These results may be explained by a compensation for the lack of NNT, since the total activities of concurrent NADP+-reducing enzymes (IDH2, malic enzymes and glutamate dehydrogenase) were ~70% elevated in Nnt-/- mice. Importantly, respiratory rates were similar between SMM from both Nnt genotypes despite differing NNT contributions to H2O2 removal and their implications for an evolving concept in the literature are discussed. We concluded that NNT is capable of meaningfully sustaining NADPH-dependent H2O2 removal in intact SMM. Nonetheless, if the available substrates favor non-NNT sources of NADPH, the H2O2 removal by SMM is maintained in Nnt-/- mice SMM.


Subject(s)
Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Muscle, Skeletal/cytology , NADP Transhydrogenases/metabolism , NADP/metabolism , Animals , Mice , Mutation , NADP Transhydrogenases/genetics
3.
J Neurochem ; 147(5): 663-677, 2018 12.
Article in English | MEDLINE | ID: mdl-30281804

ABSTRACT

Among mitochondrial NADP-reducing enzymes, nicotinamide nucleotide transhydrogenase (NNT) establishes an elevated matrix NADPH/NADP+ by catalyzing the reduction of NADP+ at the expense of NADH oxidation coupled to inward proton translocation across the inner mitochondrial membrane. Here, we characterize NNT activity and mitochondrial redox balance in the brain using a congenic mouse model carrying the mutated Nnt gene from the C57BL/6J strain. The absence of NNT activity resulted in lower total NADPH sources activity in the brain mitochondria of young mice, an effect that was partially compensated in aged mice. Nonsynaptic mitochondria showed higher NNT activity than synaptic mitochondria. In the absence of NNT, an increased release of H2 O2 from mitochondria was observed when the metabolism of respiratory substrates occurred with restricted flux through relevant mitochondrial NADPH sources or when respiratory complex I was inhibited. In accordance, mitochondria from Nnt-/- brains were unable to sustain NADP in its reduced state when energized in the absence of carbon substrates, an effect aggravated after H2 O2 bolus metabolism. These data indicate that the lack of NNT in brain mitochondria impairs peroxide detoxification, but peroxide detoxification can be partially counterbalanced by concurrent NADPH sources depending on substrate availability. Notably, only brain mitochondria from Nnt-/- mice chronically fed a high-fat diet exhibited lower activity of the redox-sensitive aconitase, suggesting that brain mitochondrial redox balance requires NNT under the metabolic stress of a high-fat diet. Overall, the role of NNT in the brain mitochondria redox balance especially comes into play under mitochondrial respiratory defects or high-fat diet.


Subject(s)
Brain Chemistry/physiology , Diet, High-Fat , Energy Metabolism/physiology , Mitochondria/metabolism , NADP Transhydrogenase, AB-Specific/metabolism , Aging , Animals , Brain Chemistry/drug effects , Electron Transport Complex I , Energy Metabolism/drug effects , Hydrogen Peroxide/metabolism , Membrane Potential, Mitochondrial , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , NADP/metabolism , NADP Transhydrogenase, AB-Specific/genetics , Oxidation-Reduction , Oxygen Consumption/genetics , Oxygen Consumption/physiology , Synaptosomes/metabolism
4.
Free Radic Biol Med ; 113: 190-202, 2017 12.
Article in English | MEDLINE | ID: mdl-28964917

ABSTRACT

The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt+/+) or without (Nnt-/-) NNT activity; the spontaneously mutated allele (Nnt-/-) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt-/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt+/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt-/- mice was accompanied by an increased H2O2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca2+-induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt-/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt-/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt+/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD.


Subject(s)
Hydrogen Peroxide/metabolism , Mitochondria, Liver/enzymology , NADP Transhydrogenase, AB-Specific/genetics , Non-alcoholic Fatty Liver Disease/etiology , Oxidative Stress , Pyruvate Dehydrogenase Complex/metabolism , Aconitate Hydratase/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Liver/metabolism , Mitochondrial Proteins/genetics , Mutation , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/metabolism , Phosphorylation , Protein Processing, Post-Translational , Triglycerides/metabolism
5.
Oxid Med Cell Longev ; 2015: 940627, 2015.
Article in English | MEDLINE | ID: mdl-26583063

ABSTRACT

In addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca(2+) but exhibited a much lower Ca(2+) retention capacity than mouse mitochondria. Although the known PTP inhibitors cyclosporin A, ADP, and ATP significantly increased the marsupial mitochondria capacity to retain Ca(2+), their effects were much larger in mice than in marsupial mitochondria. Both fluorescence and HPLC analysis of mitochondrial nicotinamide nucleotides showed that both content and state of reduction (mainly of NADPH) were lower in the marsupial mitochondria than in mice mitochondria despite the similarity in the activity of the glutathione peroxidase/reductase system. Overall, these data suggest that PTP opening is an important event in processes of Ca(2+) signalling to cell death mediated by mitochondrial redox imbalance in G. microtarsus.


Subject(s)
Calcium/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , NAD/chemistry , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Chromatography, High Pressure Liquid , Cyclosporine/pharmacology , Glutathione Peroxidase/metabolism , Ions/chemistry , Longevity , Marsupialia/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria, Liver/enzymology , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Permeability Transition Pore , NAD/analysis , NADP Transhydrogenases/metabolism , Reactive Oxygen Species/metabolism
6.
Free Radic Biol Med ; 63: 446-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23747984

ABSTRACT

NADPH is the reducing agent for mitochondrial H2O2 detoxification systems. Nicotinamide nucleotide transhydrogenase (NNT), an integral protein located in the inner mitochondrial membrane, contributes to an elevated mitochondrial NADPH/NADP(+) ratio. This enzyme catalyzes the reduction of NADP(+) at the expense of NADH oxidation and H(+) reentry to the mitochondrial matrix. A spontaneous Nnt mutation in C57BL/6J (B6J-Nnt(MUT)) mice arose nearly 3 decades ago but was only discovered in 2005. Here, we characterize the consequences of the Nnt mutation on the mitochondrial redox functions of B6J-Nnt(MUT) mice. Liver mitochondria were isolated both from an Nnt wild-type C57BL/6 substrain (B6JUnib-Nnt(W)) and from B6J-Nnt(MUT) mice. The functional evaluation of respiring mitochondria revealed major redox alterations in B6J-Nnt(MUT) mice, including an absence of transhydrogenation between NAD and NADP, higher rates of H2O2 release, the spontaneous oxidation of NADPH, the poor ability to metabolize organic peroxide, and a higher susceptibility to undergo Ca(2+)-induced mitochondrial permeability transition. In addition, the mitochondria of B6J-Nnt(MUT) mice exhibited increased oxidized/reduced glutathione ratios as compared to B6JUnib-Nnt(W) mice. Nonetheless, the maximal activity of NADP-dependent isocitrate dehydrogenase, which is a coexisting source of mitochondrial NADPH, was similar between both groups. Altogether, our data suggest that NNT functions as a high-capacity source of mitochondrial NADPH and that its functional loss due to the Nnt mutation results in mitochondrial redox abnormalities, most notably a poor ability to sustain NADP and glutathione in their reduced states. In light of these alterations, the potential drawbacks of using B6J-Nnt(MUT) mice in biomedical research should not be overlooked.


Subject(s)
Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , NADP Transhydrogenases/metabolism , NADP/metabolism , Animals , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Mice , Mitochondria, Liver/drug effects , Mitochondria, Liver/pathology , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/enzymology , Mutation , NADP Transhydrogenases/genetics , Oxidation-Reduction/drug effects
7.
J Bioenerg Biomembr ; 43(6): 709-15, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21964737

ABSTRACT

Mitochondrial permeability transition is typically characterized by Ca(2+) and oxidative stress-induced opening of a nonselective proteinaceous membrane pore sensitive to cyclosporin A, known as the permeability transition pore (PTP). Data from our laboratory provide evidence that the PTP is formed when inner membrane proteins aggregate as a result of disulfide cross-linking caused by thiol oxidation. Here we compared the redox properties between PTP in intact mitochondria and mitoplasts. The rat liver mitoplasts retained less than 5% and 10% of the original outer membrane markers monoamine oxidase and VDAC, respectively. Kidney mitoplasts also showed a partial depletion of hexokinase. In line with the redox nature of the PTP, mitoplasts that were more susceptible to PTP opening than intact mitochondria showed higher rates of H(2)O(2) generation and decreased matrix NADPH-dependent antioxidant activity. Mitoplast PTP was also sensitive to the permeability transition inducer tert-butyl hydroperoxide and to the inhibitors cyclosporin A, EGTA, ADP, dithiothreitol and catalase. Taken together, these data indicate that, in mitoplasts, PTP exhibits redox regulatory characteristics similar to those described for intact mitochondria.


Subject(s)
Hydrogen Peroxide/metabolism , Kidney/metabolism , Liver/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Adenosine Diphosphate/pharmacology , Animals , Catalase/metabolism , Chelating Agents/pharmacology , Cyclosporine/pharmacology , Egtazic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Female , Mitochondrial Permeability Transition Pore , Organ Specificity/drug effects , Organ Specificity/physiology , Oxidation-Reduction/drug effects , Rats , Rats, Wistar , tert-Butylhydroperoxide/pharmacology
8.
BMC Med Genet ; 12: 114, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21884584

ABSTRACT

BACKGROUND: Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA) on left ventricular structure in Brazilian hypertensive subjects. METHODS: We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441) and Vitória (n = 120)] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping. In addition, NADPH-oxidase activity was quantified in peripheral mononuclear cells from a subgroup of Campinas sample. RESULTS: Genotype frequencies in both samples were consistent with the Hardy- Weinberg equilibrium. Subjects with the T allele presented higher left ventricular mass/height2.7 than those carrying the CC genotype in Campinas (76.8 ± 1.6 vs 70.9 ± 1.4 g/m2.7; p = 0.009), and in Vitória (45.6 ± 1.9 vs 39.9 ± 1.4 g/m2.7; p = 0.023) samples. These results were confirmed by stepwise regression analyses adjusted for age, gender, blood pressure, metabolic variables and use of anti-hypertensive medications. In addition, increased NADPH-oxidase activity was detected in peripheral mononuclear cells from T allele carriers compared with CC genotype carriers (p = 0.03). CONCLUSIONS: The T allele of the p22-phox C242T polymorphism is associated with higher left ventricular mass/height 2.7 and increased NADPH-oxidase activity in Brazilian hypertensive patients. These data suggest that genetic variation within NADPH-oxidase components may modulate left ventricular remodeling in subjects with systemic hypertension.


Subject(s)
Hypertension/genetics , Hypertension/pathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , NADPH Oxidases/genetics , Polymorphism, Single Nucleotide , Alleles , Brazil , Cross-Sectional Studies , Female , Gene Frequency , Humans , Hypertension/enzymology , Hypertrophy, Left Ventricular/enzymology , Male , Middle Aged , NADPH Oxidases/blood , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...