Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(15): 152001, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33412522

ABSTRACT

Silicene, the 2D silicon allotrope analogue of graphene, was theoretically predicted in 1994 as a metastable buckled honeycomb silicon monolayer. Similarly to its carbon counterpart it was predicted to present an electronic structure hosting Dirac cones. In the last decade a great deal of work has been done to synthesize silicene and exploit its properties. In this paper we will review our research group activity in the field, dealing in particular with silicon-substrate interaction upon silicon deposition, and discuss the still debated silicene formation starting from the chemistry of silicon unsaturated compounds.

2.
Sci Rep ; 10(1): 14619, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32884112

ABSTRACT

Topological surface states usually emerge at the boundary between a topological and a conventional insulator. Their precise physical character and spatial localization depend on the complex interplay between the chemical, structural and electronic properties of the two insulators in contact. Using a lattice-matched heterointerface of single and double bilayers of ß-antimonene and bismuth selenide, we perform a comprehensive experimental and theoretical study of the chiral surface states by means of microscopy and spectroscopic measurements complemented by first-principles calculations. We demonstrate that, although ß-antimonene is a trivial insulator in its free-standing form, it inherits the unique symmetry-protected spin texture from the substrate via a proximity effect that induces outward migration of the topological state. This "topologization" of ß-antimonene is found to be driven by the hybridization of the bands from either side of the interface.

3.
Nanotechnology ; 29(6): 065704, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29320369

ABSTRACT

We report a study of the interface between antimony and the prototypical topological insulator Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of ß-antimonene.

4.
J Phys Condens Matter ; 29(21): 215001, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28362270

ABSTRACT

The surface electronic structure of Si(1 1 1)-[Formula: see text] has been studied by angle-resolved photo electron spectroscopy. Replicas of the S 1 surface state are found in correspondence with several [Formula: see text] unit cells in the reciprocal space. This observation resolves in a direct way the long-standing dichotomy between the structural and electronic properties of the system previously discussed on the basis of the [Formula: see text] or [Formula: see text] R30° surface models.

5.
J Phys Condens Matter ; 25(31): 315301, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23835457

ABSTRACT

Interest in the Si/Ag(110) system, which forms highly ordered linear nanostructures coined 'silicon nanoribbons', was recently boosted by the claim that such nanoribbons may be formed by silicon atoms arranged in a 2D honeycomb structure as in graphene, i.e. silicene. Despite such a revived interest, many discrepancies still exist in the recently reported results. This paper reports on a systematic investigation by scanning tunneling microscopy and low-energy electron diffraction of the Si/Ag(110) system as a function of the amount of deposited silicon and the deposition temperature. This reveals a complex interplay between these two factors, resulting in a rich array of possible self-assembled nanostructures and surface reconstructions. Several novel findings and clarification of the contradictory results reported in the literature are discussed in this work. In particular, the deposition temperature is demonstrated to be a key parameter to control the width of the Si nanoribbons produced. Recently, massive linear nanostructures were reported to be 'multilayer silicene', forming once the deposited silicon amount exceeds full coverage. However, we show that such nanostructures are also observed at low silicon coverage, demonstrating that their formation is exclusively determined by a deposition temperature higher than 460 K. On the other hand, for Si amounts higher than one monolayer the surface presents a novel c(8 × 4) reconstruction, which is responsible for the ×4 periodicity detected by LEED measurements, previously attributed to the 1.6 nm-wide nanoribbons overlayer or to 'multilayer silicene'. Finally, the large collection of acquired data also allowed us to single out image artifacts that may explain the contradictory results appearing in previous papers.

6.
Langmuir ; 27(12): 7410-8, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21604683

ABSTRACT

The formation of 2D chiral monolayers obtained by self-assembly of chiral molecules on surfaces has been widely reported in the literature. Control of chirality transfer from a single molecule to surface superstructures is a challenging and important aspect for tailoring the properties of 2D nanostructures. However, despite the wealth of investigations performed in recent years, how chiral transfer takes place on a large scale still remains an open question. In this paper we report a coupling of scanning tunneling microscopy and low energy electron diffraction measurements with an original theoretical approach, combining molecular dynamics and essential dynamics with density functional theory, to investigate self-assembled chiral structures formed when alaninol adsorbs on Cu(100). The peculiarity of this system is related to the formation of tetrameric molecular structures which constitute the building blocks of the self-assembled chiral monolayer. Such characteristics make alaninol/Cu(100) a good candidate to reveal chiral expression changes. We find that the deposition of alaninol enantiomers results in the formation of isolated tetramers that are aligned along the directions of the substrate at low coverage or when geometrical confinement prevents long-range order. Conversely, a rotation of 14° with respect to the Cu(100) unit vectors is observed when small clusters of tetramers are formed. An insight to the process leading to a 2D globally chiral surface has been obtained by monitoring molecular assemblies as they grow from the early stages of adsorption, suggesting that the distinctive orientation of the self-assembled monolayer originates from a balance of cooperating forces which start acting only when tetramers pack together to form small clusters.

7.
J Microsc ; 230(Pt 2): 218-23, 2008 May.
Article in English | MEDLINE | ID: mdl-18445150

ABSTRACT

INTRODUCTION: The aim of this study is to investigate the nanocrystallization of steels caused by the transformation from the austenitic to the martensitic phase induced by a severe plastic deformation (SPD) treatment. In this framework, we applied an air blast shot peening treatment, which is a simple protocol widely used for industrial purposes. METHODS: AISI 286 and AISI 316 specimens were peened for different times and polished using diamond pastes in order to remove corrugations higher than 1 mum. The characterization of the steel surfaces was performed by atomic force microscopy (AFM) operating in contact mode. Additional EDXD measurements were performed to confirm the phase transition. RESULTS AND DISCUSSION: An AFM-based characterization at nanometric level of the steel surfaces is provided. When the peening exceeds a threshold time that, as expected, depends on the steel composition, a uniform nanostructuration is detected. It is well known that such rearrangement is associated to the growth of a martensitic phase. To date, AFM has been employed in this field only for few applications and to solve specific problems. On the other hand, our results demonstrate that this is a useful technique for the characterization of hardened surfaces, especially when non-destructive sample preparation treatments are required. Moreover, we show that AFM can be a useful tool also for in situ industrial diagnostics of metallic parts.

SELECTION OF CITATIONS
SEARCH DETAIL
...