Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Scientifica (Cairo) ; 2023: 8846387, 2023.
Article in English | MEDLINE | ID: mdl-38146491

ABSTRACT

The cytotoxic properties of two extracts from Chenopodium quinoa Willd. and three synthetic sapogenins were evaluated in different cancer cell lines (A549, SH-SY5Y, HepG2, and HeLa) to investigate their cytotoxic effects and determine if these cell lines activate the caspase pathway for apoptosis in response to saponin and sapogenin treatment. The saponin extracts were isolated from the agro-industrial waste of Chenopodium quinoa Willd., while the sapogenins were identified and quantitatively determined by High-Performance Liquid Chromatography (HPLC). Among these compounds, ursolic acid was the most active compound, with high IC50 values measured in all cell lines. In addition, hederagenin demonstrated higher caspase-3 activity than staurosporine in HeLa cells, suggesting an anti-cytotoxic activity via a caspase-dependent apoptosis pathway. HPLC analysis showed that the concentration of hederagenin was higher than that of oleanolic acid in ethanolic extracts of white and red quinoa. The ethanolic extracts of white and red quinoa did not show cytotoxic activity. On the other hand, the synthetic sapogenins such as ursolic acid, oleanolic acid, and hederagenin significantly decreased the viability of the four cell lines studied. Finally, by Caspase-3 assay, it was found that HeLa undergoes apoptosis during cell death because hederagenin produces a significant increase in PARP-1 hydrolysis in HeLa cells.

2.
Hum Mol Genet ; 32(20): 2966-2980, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37522762

ABSTRACT

Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.


Subject(s)
Amyotrophic Lateral Sclerosis , Herpesvirus 8, Human , Neuroblastoma , Humans , Herpesvirus 8, Human/metabolism , Proteomics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cell Line , Amyotrophic Lateral Sclerosis/metabolism , Viral Regulatory and Accessory Proteins/metabolism
3.
Horm Behav ; 134: 105013, 2021 08.
Article in English | MEDLINE | ID: mdl-34171577

ABSTRACT

Exposure to adverse childhood experiences (ACEs) is a risk factor for the development of psychiatric disorders in addition to cardiovascular associated diseases. This risk is elevated when the cumulative burden of ACEs is increased. Laboratory animals can be used to model the changes (as well as the underlying mechanisms) that result in response to adverse events. In this study, using male and female Sprague Dawley rats, we examined the impact of increasing stress burden, utilizing both two adverse early life experiences (parental/offspring high fat diet + limited bedding exposure) and three adverse early life experiences (parental/offspring high fat diet + limited bedding exposure + neonatal inflammation), on maternal care quality and offspring behavior. Additionally, we measured hormones and hippocampal gene expression related to stress. We found that the adverse perinatal environment led to a compensatory increase in maternal care. Moreover, these dams had reduced maternal expression of oxytocin receptor, compared to standard housed dams, in response to acute stress on postnatal day (P)22. In offspring, the two-hit and three-hit models resulted in a hyperlocomotor phenotype and increased body weights. Plasma leptin and hippocampal gene expression of corticotropin releasing hormone (Chrh)1 and Crhr2 were elevated (males) while expression of oxytocin was reduced (females) following acute stress. On some measures (e.g., hyperlocomotion, leptin), the magnitude of change was lower in the three-hit compared to the two-hit model. This suggests that multiple early adverse events can have interactive, and often unpredictable, impacts, highlighting the importance of modeling complex interactions amongst stressors during development.


Subject(s)
Corticotropin-Releasing Hormone , Prenatal Exposure Delayed Effects , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Diet, High-Fat , Female , Hippocampus/metabolism , Male , Oxytocin , Pregnancy , Rats , Rats, Sprague-Dawley
4.
Article in English | MEDLINE | ID: mdl-32368757

ABSTRACT

Maternal immune activation (MIA) has been identified as a significant risk factor for several neurodevelopmental disorders. We have previously demonstrated that postpubertal environmental enrichment (EE) rescues and promotes resiliency against MIA in male rats. Importantly, EE protocols have demonstrated clinical relevancy in human rehabilitation settings. Applying some of the elements of these EE protocols (e.g. social, physical, cognitive stimulation) to animal models of health and disease allows for the exploration of the mechanisms that underlie their success. Here, using a MIA model, we further investigate the rehabilitative potential of complex environments with a focus on female animals. Additionally, we expand upon some of our previous work by exploring genetic markers of synaptic plasticity and stress throughout several brain regions of both sexes. In the current study, standard housed female Sprague-Dawley rats were challenged with either the inflammatory endotoxin lipopolysaccharide (LPS; 100 µg/kg) or saline (equivolume) on gestational day 15. On postnatal day 50, male and female offspring were randomized into one of three conditions that differed in terms of cage size, number of cage mates (social stimulation) and enrichment materials. Spatial discrimination ability and social behavior were assessed six weeks later. Similar to our previously published work in males, our results revealed that a single LPS injection during mid gestation disrupted spatial discrimination ability in female rats. Postpubertal EE rescued this disruption. On the endocrine level, EE dampened elevations in plasma corticosterone that followed MIA, which may mediate EE's rehabilitative effects in female offspring. Within the prefrontal cortex, hippocampus, amygdala, and hypothalamus, MIA and EE altered the mRNA expression of several genes associated with resiliency and synaptic plasticity in both sexes. Overall, our findings provide further evidence that EE may serve as a therapeutic intervention for MIA-induced behavioral and cognitive deficits. Moreover, we identify some sexually dimorphic molecular mechanisms that may underlie these impairments and their rescue.

5.
Brain Behav Immun ; 83: 44-55, 2020 01.
Article in English | MEDLINE | ID: mdl-31493445

ABSTRACT

Adverse experiences during pregnancy induce placental programming, affecting the fetus and its developmental trajectory. However, the influence of 'positive' maternal experiences on the placenta and fetus remain unclear. In animal models of early life stress, environmental enrichment (EE) has ameliorated and even prevented associated impairments in brain and behavior. Here, using a maternal immune activation (MIA) model in rats, we test whether EE attenuates maternal, placental and/or fetal responses to an inflammatory challenge, thereby offering a mechanism by which fetal programming may be prevented. Moreover, we evaluate life-long EE exposure on offspring development and examine a constellation of genes and epigenetic writers that may protect against MIA challenges. In our model, maternal plasma corticosterone and interleukin-1ß were elevated 3 h after MIA, validating the maternal inflammatory response. Evidence for developmental programming was demonstrated by a simultaneous decrease in the placental enzymes Hsd11b2 and Hsd11b2/Hsd11b1, suggesting disturbances in glucocorticoid metabolism. Reductions of Hsd11b2 in response to challenge is thought to result in excess glucocorticoid exposure to the fetus and altered glucocorticoid receptor expression, increasing susceptibility to behavioral impairments later in life. The placental, but not maternal, glucocorticoid implications of MIA were attenuated by EE. There were also sustained changes in epigenetic writers in both placenta and fetal brain as a consequence of environmental experience and sex. Following MIA, both male and female juvenile animals were impaired in social discrimination ability. Life-long EE mitigated these impairments, in addition to the sex specific MIA associated disruptions in central Fkbp5 and Oprm1. These data provide the first evidence that EE protects placental functioning during stressor exposure, underscoring the importance of addressing maternal health and well-being throughout pregnancy. Future work must evaluate critical periods of EE use to determine if postnatal EE experience is necessary, or if prenatal exposure alone is sufficient to confer protection.


Subject(s)
Fetal Development/immunology , Placenta/immunology , Prenatal Exposure Delayed Effects/immunology , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , Animals , Female , Fetus/immunology , Glucocorticoids/metabolism , Male , Placenta/enzymology , Placenta/metabolism , Pregnancy , Rats
6.
Horm Behav ; 111: 46-59, 2019 05.
Article in English | MEDLINE | ID: mdl-30708031

ABSTRACT

Early life exposure to a low security setting, characterized by a scarcity of resources and limited food access, increases the risk for psychiatric illness and metabolic dysfunction. We utilized a translational rat model to mimic a low security environment and determined how this manipulation affected offspring behavior, metabolism, and puberty. Because food insecurity in humans is associated with reduced access to healthy food options the "low security" rat manipulation combined a Western diet with exposure to a limited bedding and nesting manipulation (WD-LB). In this setting, dams were provided with limited nesting materials during the pups' early life (P2-P10). This manipulation was contrasted with standard rodent caging (SD) and environmental enrichment (EE), to model "medium security" and "high security" environments, respectively. To determine if transitioning from a low to high security environment improved outcomes, some juvenile WD-LB offspring were exposed to EE. Maternal care was impacted by these environments such that EE dams engaged in high quality care when on the nest, but spent less time on the nest than SD dams. Although WD-LB dams excessively chased their tails, they were very attentive to their pups, perhaps to compensate for limited resources. Offspring exposed to WD-LB only displayed subtle changes in behavior. However, WD-LB exposure resulted in significant metabolic dysfunction characterized by increased body weight, precocious puberty and alterations in the hypothalamic kisspeptin system. These negative effects of WD-LB on puberty and weight regulation were mitigated by EE exposure. Collectively, these studies suggest that both compensatory maternal care and juvenile enrichment can reduce the impact of a low security environment. Moreover, they highlight how utilizing diverse models of resource (in)stability can reveal mechanisms that confer vulnerability and resilience to early life stress.


Subject(s)
Housing, Animal , Maternal Behavior/physiology , Sexual Maturation/physiology , Social Environment , Stress, Psychological/complications , Animals , Body Weight/physiology , Disease Models, Animal , Female , Hypothalamus/metabolism , Male , Maternal Behavior/psychology , Physical Stimulation/methods , Rats , Rats, Sprague-Dawley , Stress, Psychological/psychology
7.
Psychoneuroendocrinology ; 98: 74-85, 2018 12.
Article in English | MEDLINE | ID: mdl-30121011

ABSTRACT

Both basic and clinical research support the use of tactile stimulation to rescue several neurobiobehavioral consequences that follow early life stress. Here, using a translational rodent model of the neonatal intensive care unit (NICU), we tested the individual prophylactic potential of a variety of sensory interventions including tactile (brushing pups with a paint brush to mimic maternal licking), auditory (a simulated lactating rat dam heart beat), and olfactory (a series of aroma therapy scents) stimulation. The NICU model was developed to mimic not only the reduced parental contact that sick infants receive (by isolating rat pups from their litters), but also the nosocomial infections and medical manipulations associated with this experience (by utilizing a dual lipopolysaccharide injection schedule). Each of the neurobiobehavioral consequences observed were dissociable between isolation and inflammation, or required a combined presentation ('two hits') of the neonatal stressors. Sprague-Dawley rats exposed to these early life stressors presented with sex-specific disruptions in both separation-induced ultrasonic vocalization (USV) distress calls (males & females) and juvenile social play USVs (males only). All three sensory enhancement interventions were associated with the rescue of potentiated distress calls while olfactory stimulation was protective of social vocalizations. Female rats exposed to early life stress experienced precocious puberty and shifts in the hypothalamic GnRh axis; sensory enrichment counter-acted the advanced pubertal onset. Animals that underwent the NICU protocol also displayed maturational acceleration in terms of the loss of the rooting reflex in addition to hyperalgesia, a reduced preference for a novel conspecific, blunted basal plasma corticosterone and reduced hippocampal glucocorticoid receptor expression. These alterations closely simulated the clinical effects of early life adversity in terms of disruptions in the hypothalamic pituitary "stress" axis, social communication and engagement, tactile system processing, and accelerated maturation. Moreover, sensory enrichment attenuated many of these behavioral and neurophysiological alterations, and even slowed maturation. Overall, this supports the translatability of our novel rodent model and its potential utility in understanding how brain maturation and quality of early life experiences may interact to shape the integrity of stress and sensory system development. Future work must determine the appropriate modalities and parameters (e.g. patterning, timing) for effective sensory enrichment interventions.


Subject(s)
Animals, Newborn/psychology , Social Isolation/psychology , Stress, Psychological/prevention & control , Acoustic Stimulation/psychology , Animals , Behavior, Animal , Corticosterone/analysis , Disease Models, Animal , Female , Intensive Care Units, Neonatal , Male , Neurosecretory Systems/physiology , Odorants , Physical Stimulation/methods , Rats , Rats, Sprague-Dawley , Smell , Vocalization, Animal
8.
Toxicol Appl Pharmacol ; 340: 67-76, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29288688

ABSTRACT

Macamides are a distinct class of secondary metabolites, benzylamides of long chain fatty acids, which were isolated from the Peruvian plant Lepidium meyenii (Maca). As structural analogues of the endocannabinoid anandamide (AEA), they have demonstrated neuroprotective effects in vitro and in vivo. The purpose of this study was to demonstrate the neuroprotective activity of the macamides: N-(3-methoxybenzyl)oleamide (MAC 18:1), N-(3-methoxybenzyl)linoleamide (MAC 18:2) and N-(3-methoxybenzyl)linolenamide (MAC 18:3) in a neurotoxic environment caused by exposure of U-87 MG glioblastoma cells to manganese chloride (MnCl2). The neuroprotective effects of these macamides were reversed by the CB1 antagonist AM251. The mechanism by which manganese (Mn) induces cell damage was investigated by studying its effects on mitochondria. Reactive oxygen species (ROS) increase intracellular calcium and enhance the opening of mitochondrial permeability transition pores (MPTP), which leads to decreased mitochondrial membrane potential (MMP), to disruption of mitochondria and to neuron death in neurodegenerative disorders. In this study, MnCl2 at 50µM was responsible for mitochondrial disruption, which was attenuated by all three of the macamides tested. Human peroxisome proliferator-activated receptor gamma (PPARγ) has been proposed to be a cannabinoid target, and PPARγ has also been demonstrated to mediate some of the longer-term vascular effects of the plant cannabinoid, ∆9-tetrahydrocannabinol. PPARγ activation was observed in response to exposures of cells to MAC 18:2 and MAC 18:3. These findings suggest that macamides achieve their neuroprotective effects by binding to CB1 receptors to protect against Mn-induced toxicity in U-87 MG glioblastoma cells. Additionally these macamides, in a manner similar to the analogous endocannabinoid AEA, interact with other targets such as PPARγ to regulate metabolism and energy homeostasis, cell differentiation and inflammation.


Subject(s)
Glioblastoma/metabolism , Lepidium , Manganese/toxicity , Mitochondria/metabolism , Neuroprotective Agents/metabolism , Plant Extracts/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Mitochondria/drug effects , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Receptor, Cannabinoid, CB1/metabolism
9.
Front Pharmacol ; 8: 772, 2017.
Article in English | MEDLINE | ID: mdl-29201005

ABSTRACT

Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor involved in the uptake of a variety of molecules, such as apoE, α2-macroglobulin, and the amyloid ß peptide (Aß), for either transcellular transport, protein trafficking or lysosomal degradation. The LRP1 gene can be transcribed upon activation of peroxisome proliferator receptor activated-γ (PPARγ) by the potent PPARγ agonist, rosiglitazone (RGZ). In previous studies, RGZ was shown to upregulate LRP1 levels in concentrations between 0.1 and 5 µM in HepG2 cells. In this study, we sought to replicate previous studies and to investigate the molecular mechanism by which high concentrations of RGZ reduce LRP1 levels in HepG2 cells. Our data confirmed that transcriptional activation of LRP1 occurred in response to RGZ at 3 and 10 µM, in agreement with the study reported by Moon et al. (2012a). On the other hand, we found that high concentrations of RGZ decreased both mRNA and protein levels of LRP1. Mechanistically, transcriptional dysregulation of LRP1 was affected by the downregulation of PPARγ in a time- and concentration-dependent manner. However, downregulation of PPARγ was responsible for only 40% of the LRP1 reduction and thereby the remaining loss of LRP1 (60%) was found to be through degradation in the lysosomal system. In conclusion, our findings demonstrate the mechanisms by which high concentrations of RGZ caused LRP1 levels to be reduced in HepG2 cells. Taken together, this data will be helpful to better explain the pharmacological modulation of this pivotal membrane receptor by PPARγ agonists.

10.
Bioorg Chem ; 75: 274-290, 2017 12.
Article in English | MEDLINE | ID: mdl-29055857

ABSTRACT

In this work, we described the design, synthesis and characterization of a new class of NPSR antagonists bearing the tetracyclic coumarinyl pyranopyrimidine scaffold incorporated with different acyclic and/or heterocyclic moieties. These compounds are highlighted in this study as never being used as NPSR antagonists before which provides a model for the discovery of new bioactive inhibitors that may hold potential for drug development towards anxiety, food, and addiction disorders. Synthetic and medicinal chemistry studies led to the identification of four potent antagonists, compounds 7d, 10, 12 and 13, which were able to significantly inhibit the stimulatory effect of NPS through counteracting the increased intracellular Ca2+ accumulation. The target compound 7d was the most active derivative behaving as a pure NPSR antagonist and displaying IC50 value of 2 µM. Homology model of NPSR was built based on bovine rhodopsin structure. Modeling studies were carried out to further rationalize the NPSR binding mode of the target compounds. Moreover, molecular dynamics simulation study was performed for compounds 7d, 10 and 12 which revealed the stability of the ligand-protein complex and the reliability of the docking studies.


Subject(s)
Drug Design , Pyrimidines/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Binding Sites , Coumarins/chemistry , Cycloaddition Reaction , HEK293 Cells , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Tertiary , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
11.
Arch Pharm (Weinheim) ; 350(9)2017 Sep.
Article in English | MEDLINE | ID: mdl-28787092

ABSTRACT

Breast and cervical cancers are the most common gender-specific cancers affecting women worldwide. In this investigation, we highlighted the synthesis, VEGFR-2 and p38α MAPK inhibitory activity of new series of fluorinated coumarin-based derivatives featuring a variety of bioactive chemical moieties attached or fused to the coumarin nucleus at the 3 and/or 4 position. The bioactive inhibitors were further assessed for their anti-proliferative effect against human MCF-7 breast cancer and HeLa cervical cancer cell lines, respectively. Most of the tested compounds showed potent preferential inhibition effects against human VEGFR-2 and remarkable anticancer activities in the human breast cancer cell line MCF-7. Compounds 29, 24, and 2 displayed the highest inhibitory activity against VEGFR-2 (94% inhibition) and they were the most potent anticancer agents toward MCF-7 cancer cells with IC50 values of 7.90, 8.28, and 8.30 µg/mL, respectively. Compound 13 inhibited p38α MAPK phosphorylation with a significant reduction in % cell viability against HeLa cancer cells at 10 and 30 µM. Docking experiments carried out on VEGFR-2 and p38 MAPK crystallographic structures revealed that the active compounds bind to the active sites through H-bonds, arene-cation, and hydrophobic π-π interactions. QSAR analysis demonstrated considerable correlation coefficient (R2 = 0.76969) and root mean square error (RMSE = 0.10446) values. Also, the residual values between the experimental pIC50 and predicted pIC50 are very close, indicating the reliability of the established QSAR model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Coumarins/chemical synthesis , Coumarins/pharmacology , Uterine Cervical Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2/drug effects , p38 Mitogen-Activated Protein Kinases/drug effects , Female , HeLa Cells , Humans , MCF-7 Cells , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...