Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Biol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934087

ABSTRACT

Evaluating changes in metabolic pathway activity is essential for studying disease mechanisms and developing new treatments, with significant benefits extending to human health. Here, we propose EMPathways2, a maximum likelihood pipeline that is based on the expectation-maximization algorithm, which is capable of evaluating enzyme expression and metabolic pathway activity level. We first estimate enzyme expression from RNA-seq data that is used for simultaneous estimation of pathway activity levels using enzyme participation levels in each pathway. We implement the novel pipeline to RNA-seq data from several groups of mice, which provides a deeper look at the biochemical changes occurring as a result of bacterial infection, disease, and immune response. Our results show that estimated enzyme expression, pathway activity levels, and enzyme participation levels in each pathway are robust and stable across all samples. Estimated activity levels of a significant number of metabolic pathways strongly correlate with the infected and uninfected status of the respective rodent types.

2.
J Comput Biol ; 28(8): 842-855, 2021 08.
Article in English | MEDLINE | ID: mdl-34264744

ABSTRACT

In this article, we present our novel pipeline for analysis of metabolic activity using a microbial community's metatranscriptome sequence data set for validation. Our method is based on expectation-maximization (EM) algorithm and provides enzyme expression and pathway activity levels. Further expanding our analysis, we consider individual enzymatic activity and compute enzyme participation coefficients to approximate the metabolic pathway activity more accurately. We apply our EM pathways pipeline to a metatranscriptomic data set of a plankton community from surface waters of the Northern Gulf of Mexico. The data set consists of RNA-seq data and respective environmental parameters, which were sampled at two depths, six times a day over multiple 24-hour cycles. Furthermore, we discuss microbial dependence on day-night cycle within our findings based on a three-way correlation of the enzyme expression during antipodal times-midnight and noon. We show that the enzyme participation levels strongly affect the metabolic activity estimates: that is, marginal and multiple linear regression of enzymatic and metabolic pathway activity correlated significantly with the recorded environmental parameters. Our analysis statistically validates that EM-based methods produce meaningful results, as our method confirms statistically significant dependence of metabolic pathway activity on the environmental parameters, such as salinity, temperature, brightness, and a few others.


Subject(s)
Bacteria/genetics , Gene Expression Profiling/methods , Metabolic Networks and Pathways , Plankton/microbiology , Algorithms , Gulf of Mexico , Linear Models , Metagenomics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...