Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12078, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802481

ABSTRACT

High-power laser applications, and especially laser wakefield acceleration, continue to draw attention through various research topics, and may bring many industrial applications based on compact accelerators, from ultrafast imaging to cancer therapy. However, one main step towards this is the arch issue of stability. Indeed, the interaction of a complex, aberrated laser beam with plasma involves a lot of physical phenomena and non-linear effects, such as self-focusing and filamentation. Different outcomes can be induced by small laser instabilities (i.e. laser wavefront), therefore harming any practical solution. One promising path to be explored is the use of a plasma channel to possibly guide and correct aberrated beams. Complex and costly experimental facilities are required to investigate such topics. However, one way to quickly and efficiently explore new solutions is numerical simulations, especially Particle-In-Cell (PIC) simulations if, and only if, one is confidently implementing such aberrated beams which, contrary to a Gaussian beam, do not have analytical solutions. In this research, we propose two new advancements: the correct implementation of aberrated laser beams inside a 3D PIC code, showing a great consistency, under vacuum, compared to the calculations with Fresnel theory); and the correction of their quality via the propagation inside a plasma channel. We demonstrate improvements in the beam pattern, becoming closer to a single plasma mode with less distortions, and thus suggesting a better stability for the targeted application. Through this confident calculation technique for distorted laser beams, we are now expecting to proceed with more accurate PIC simulations, closer to experimental conditions, and obtained results with plasma channels indicate promising future research.

2.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38259162

ABSTRACT

The sharp density down-ramp injection (shock injection) mechanism produces the quasi-monoenergetic electron beam with a bunch duration of tens of femtoseconds via laser wakefield acceleration. The stability of the accelerated electron beam strongly depends on the stability of the laser beam and the shock structure produced by the supersonic gas nozzle. In this paper, we report the study of a newly designed modular supersonic nozzle with a flexible stilling chamber and a converging-diverging structure. The performance of the nozzle is studied both numerically and experimentally with the computational fluid dynamics simulation and the Mach-Zehnder interferometry method. The simulation results and the experimental measurements are well consistent, and both prove the effectiveness of the stilling chamber in stabilizing the gas flow.

3.
Sci Rep ; 13(1): 18466, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891421

ABSTRACT

Laser wakefield acceleration (LWFA) continues to grow and awaken interest worldwide, especially as in various applications it approaches performance comparable to classical accelerators. However, numerous challenges still exist until this can be a reality. The complex non-linear nature of the process of interaction between the laser and the induced plasma remains an obstacle to the widespread LWFA use as stable and reliable particle sources. It is commonly accepted that the best wavefront is a perfect Gaussian distribution. However, experimentally, this is not correct and more complicated ones can potentially give better results. in this work, the effects of tuning the laser wavefront via the controlled introduction of aberrations are explored for an LWFA accelerator using the shock injection configuration. Our experiments show the clear unique correlation between the generated beam transverse characteristics and the different input wavefronts. The electron beams stability, acceleration and injection are also significantly different. We found that in our case, the best beams were generated with a specific complex wavefront. A greater understanding of electron generation as function of the laser input is achieved thanks to this method and hopes towards a higher level of control on the electrons beams by LWFA is foreseen.

4.
Opt Express ; 30(7): 10528-10546, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473017

ABSTRACT

The laser shock peening process (LSP), used to reinforce metals, currently has two major configurations with limitations. (1) Laser irradiation with large spot sizes, but with the need to use a thermal protective coating to avoid detrimental thermal damage (which increases the overall cost of the process) or (2) laser irradiation without thermal coating but with very small spot sizes and high overlap ratios, thus increasing the amount of time required to treat a given surface. In this study, we develop a new faster configuration for the LSP process, which can be applied without a thermal coating, but is still effective regarding surface treatment time. A new laser system has been developed for this faster configuration and has been used to perform the LSP treatment of aluminum alloys at a high-repetition rate. This new DPSS Q-switched Nd:YAG laser, delivers 1 J of energy with a pulse duration from 7 to 21 ns at a very high frequency of 200 Hz. We also studied the laser/matter interaction, according to the laser pulse duration, energy, and its wavelength. The water confinement (ejection and renewing) was monitored while an air-blowing system was implemented to manage water issues identified with this new configuration. Altogether, we demonstrated that such a configuration is fully operational.

SELECTION OF CITATIONS
SEARCH DETAIL
...