Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009887

ABSTRACT

We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.

2.
Clin Cancer Res ; 30(4): 741-753, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38051741

ABSTRACT

PURPOSE: AcSé-ESMART Arm C aimed to define the recommended dose and activity of the WEE1 inhibitor adavosertib in combination with carboplatin in children and young adults with molecularly enriched recurrent/refractory malignancies. PATIENTS AND METHODS: Adavosertib was administered orally, twice every day on Days 1 to 3 and carboplatin intravenously on Day 1 of a 21-day cycle, starting at 100 mg/m2/dose and AUC 5, respectively. Patients were enriched for molecular alterations in cell cycle and/or homologous recombination (HR). RESULTS: Twenty patients (median age: 14.0 years; range: 3.4-23.5) were included; 18 received 69 treatment cycles. Dose-limiting toxicities were prolonged grade 4 neutropenia and grade 3/4 thrombocytopenia requiring transfusions, leading to two de-escalations to adavosertib 75 mg/m2/dose and carboplatin AUC 4; no recommended phase II dose was defined. Main treatment-related toxicities were hematologic and gastrointestinal. Adavosertib exposure in children was equivalent to that in adults; both doses achieved the cell kill target. Overall response rate was 11% (95% confidence interval, 0.0-25.6) with partial responses in 2 patients with neuroblastoma. One patient with medulloblastoma experienced unconfirmed partial response and 5 patients had stable disease beyond four cycles. Seven of these eight patients with clinical benefit had alterations in HR, replication stress, and/or RAS pathway genes with or without TP53 alterations, whereas TP53 pathway alterations alone (8/10) or no relevant alterations (2/10) were present in the 10 patients without benefit. CONCLUSIONS: Adavosertib-carboplatin combination exhibited significant hematologic toxicity. Activity signals and identified potential biomarkers suggest further studies with less hematotoxic DNA-damaging therapy in molecularly enriched pediatric cancers.


Subject(s)
Arm , Carcinoma , Pyrazoles , Pyrimidinones , Child , Young Adult , Humans , Adolescent , Carboplatin/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Protein-Tyrosine Kinases , Cell Cycle Proteins
3.
Front Immunol ; 14: 1265469, 2023.
Article in English | MEDLINE | ID: mdl-38318504

ABSTRACT

The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.


Subject(s)
Glioma , Sarcoma, Ewing , Adolescent , Child , Humans , Antigen Presentation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , HLA Antigens/genetics , HLA-B Antigens/genetics , Sarcoma, Ewing/genetics , Animals , Young Adult
4.
Eur J Cancer ; 150: 53-62, 2021 06.
Article in English | MEDLINE | ID: mdl-33892407

ABSTRACT

PURPOSE: AcSé-ESMART is a European multicentre, proof-of-concept multiarm phase I/II platform trial in paediatric patients with relapsed/refractory cancer. Arm G assessed the activity and safety of nivolumab in combination with metronomic cyclophosphamide +/- irradiation. EXPERIMENTAL DESIGN: Following a Phase II Simon two-stage design, nivolumab was administered intravenously at 3 mg/kg every 2 weeks of a 28-day cycle, oral cyclophosphamide at 25 mg/m2 twice a day, 1 week on/1 week off. The primary endpoint was objective response rate. Irradiation/radioablation of primary tumour or metastasis could be administered as per physician's choice. Biomarker evaluation was performed by tumour immunohistochemistry, whole exome and RNA sequencing, and immunophenotyping of peripheral blood by flow cytometry. RESULTS: Thirteen patients were treated with a median age of 15 years (range: 5.5-19.4). The main histologies were high-grade glioma, neuroblastoma, and desmoplastic small round cell tumour (DSRCT). The safety profile was similar to those of single-agent nivolumab, albeit haematologic toxicity, mainly lymphocytopenia, was commonly reported with the addition of cyclophosphamide +/- irradiation. Two patients with DSRCT and ependymoma presented unconfirmed partial response and prolonged disease stabilisation. Low mutational load with modest intratumour CD3+ T-cell infiltration and immunosuppressive tumour microenvironment were observed in the tumour samples. Under combined treatment, no positive modulation of circulating T cells was displayed, while derived neutrophil-to-lymphocyte ratio increased. CONCLUSIONS: Nivolumab in combination with cyclophosphamide was well tolerated but had limited activity in this paediatric setting. Metronomic cyclophosphamide did not modulate systemic immune response that could compensate limited T-cell infiltration and the immunosuppressive tumour microenvironment. CLINICALTRIALS. GOV IDENTIFIER: NCT2813135.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/analysis , Cyclophosphamide/administration & dosage , Immune Checkpoint Inhibitors/administration & dosage , Lymphocytes, Tumor-Infiltrating/drug effects , Neoplasms/drug therapy , Nivolumab/administration & dosage , Tumor-Associated Macrophages/drug effects , Administration, Metronomic , Adolescent , Antineoplastic Combined Chemotherapy Protocols/adverse effects , B7-H1 Antigen/analysis , Biomarkers, Tumor/genetics , Child , Child, Preschool , Cyclophosphamide/adverse effects , Europe , Female , Humans , Immune Checkpoint Inhibitors/adverse effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mutation , Neoplasms/genetics , Neoplasms/immunology , Nivolumab/adverse effects , Proof of Concept Study , Time Factors , Treatment Outcome , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Young Adult
5.
Endocr Relat Cancer ; 28(1): 79-95, 2021 01.
Article in English | MEDLINE | ID: mdl-33151900

ABSTRACT

Benign adrenal tumors cover a spectrum of lesions with distinct morphology and steroid secretion. Current classification is empirical. Beyond a few driver mutations, pathophysiology is not well understood. Here, a pangenomic characterization of benign adrenocortical tumors is proposed, aiming at unbiased classification and new pathophysiological insights. Benign adrenocortical tumors (n = 146) were analyzed by transcriptome, methylome, miRNome, chromosomal alterations and mutational status, using expression arrays, methylation arrays, miRNA sequencing, SNP arrays, and exome or targeted next-generation sequencing respectively. Pathological and hormonal data were collected for all tumors. Pangenomic analysis identifies four distinct molecular categories: (1) tumors responsible for overt Cushing, gathering distinct tumor types, sharing a common cAMP/PKA pathway activation by distinct mechanisms; (2) adenomas with mild autonomous cortisol excess and non-functioning adenomas, associated with beta-catenin mutations; (3) primary macronodular hyperplasia with ARMC5 mutations, showing an ovarian expression signature; (4) aldosterone-producing adrenocortical adenomas, apart from other benign tumors. Epigenetic alterations and steroidogenesis seem associated, including CpG island hypomethylation in tumors with no or mild cortisol secretion, miRNA patterns defining specific molecular groups, and direct regulation of steroidogenic enzyme expression by methylation. Chromosomal alterations and somatic mutations are subclonal, found in less than 2/3 of cells. New pathophysiological insights, including distinct molecular signatures supporting the difference between mild autonomous cortisol excess and overt Cushing, ARMC5 implication into the adreno-gonadal differentiation faith, and the subclonal nature of driver alterations in benign tumors, will orient future research. This first genomic classification provides a large amount of data as a starting point.


Subject(s)
Adrenocortical Adenoma/genetics , Genomics/methods , Humans
6.
Mol Ther ; 27(1): 200-218, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30509566

ABSTRACT

We hypothetized that pediatric cancers would more likely harbor fusion transcripts. To dissect the complexity of the fusions landscape in recurrent solid pediatric cancers, we conducted a study on 48 patients with different relapsing or resistant malignancies. By analyzing RNA sequencing data with a new in-house pipeline for fusions detection named ChimComp, followed by verification by real-time PCR, we identified and classified the most confident fusion transcripts (FTs) according to their potential biological function and druggability. The majority of FTs were predicted to affect key cancer pathways and described to be involved in oncogenesis. Contrary to previous descriptions, we found no significant correlation between the number of fusions and mutations, emphasizing the particularity to study pre-treated pediatric patients. A considerable proportion of FTs containing tumor suppressor genes was detected, reflecting their importance in pediatric cancers. FTs containing non-receptor tyrosine kinases occurred at low incidence and predominantly in brain tumors. Remarkably, more than 30% of patients presented a potentially druggable high-confidence fusion. In conclusion, we detected new oncogenic FTs in relapsing pediatric cancer patients by establishing a robust pipeline that can be applied to other malignancies, to detect and prioritize experimental validation studies leading to the development of new therapeutic options.


Subject(s)
Neoplasms/genetics , Precision Medicine/methods , Sequence Analysis, RNA/methods , Adolescent , Adult , Child , Child, Preschool , Female , Gene Expression Profiling/methods , Humans , Infant , Male , Neoplasm Recurrence, Local/genetics , Real-Time Polymerase Chain Reaction , Transcriptome/genetics , Young Adult
7.
JCI Insight ; 3(8)2018 04 19.
Article in English | MEDLINE | ID: mdl-29669941

ABSTRACT

Mutations in the gene encoding the protein kinase A (PKA) catalytic subunit α have been found to be responsible for cortisol-producing adenomas (CPAs). In this study, we identified by whole-exome sequencing the somatic mutation p.S54L in the PRKACB gene, encoding the catalytic subunit ß (Cß) of PKA, in a CPA from a patient with severe Cushing syndrome. Bioluminescence resonance energy transfer and surface plasmon resonance assays revealed that the mutation hampers formation of type I holoenzymes and that these holoenzymes were highly sensitive to cAMP. PKA activity, measured both in cell lysates and with recombinant proteins, based on phosphorylation of a synthetic substrate, was higher under basal conditions for the mutant enzyme compared with the WT, while maximal activity was lower. These data suggest that at baseline the PRKACB p.S54L mutant drove the adenoma cells to higher cAMP signaling activity, probably contributing to their autonomous growth. Although the role of PRKACB in tumorigenesis has been suggested, we demonstrated for the first time to our knowledge that a PRKACB mutation can lead to an adrenal tumor. Moreover, this observation describes another mechanism of PKA pathway activation in CPAs and highlights the particular role of residue Ser54 for the function of PKA.


Subject(s)
Adenoma/enzymology , Cushing Syndrome/diagnostic imaging , Cyclic AMP-Dependent Protein Kinases/genetics , Hydrocortisone/metabolism , Adenoma/metabolism , Adrenal Gland Neoplasms/diagnostic imaging , Adrenal Gland Neoplasms/pathology , Adrenal Gland Neoplasms/surgery , Adrenal Insufficiency/etiology , Adrenalectomy/methods , Adult , Catalytic Domain/genetics , Cushing Syndrome/pathology , Cushing Syndrome/surgery , Cyclic AMP Receptor Protein/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits , Female , Holoenzymes/metabolism , Humans , Mutation , Treatment Outcome , Exome Sequencing/methods
8.
J Mol Diagn ; 19(5): 776-787, 2017 09.
Article in English | MEDLINE | ID: mdl-28826610

ABSTRACT

Pangenomic studies identified distinct molecular classes for many cancers, with major clinical applications. However, routine use requires cost-effective assays. We assessed whether targeted next-generation sequencing (NGS) could call chromosomal alterations and DNA methylation status. A training set of 77 tumors and a validation set of 449 (43 tumor types) were analyzed by targeted NGS and single-nucleotide polymorphism (SNP) arrays. Thirty-two tumors were analyzed by NGS after bisulfite conversion, and compared to methylation array or methylation-specific multiplex ligation-dependent probe amplification. Considering allelic ratios, correlation was strong between targeted NGS and SNP arrays (r = 0.88). In contrast, considering DNA copy number, for variations of one DNA copy, correlation was weaker between read counts and SNP array (r = 0.49). Thus, we generated TARGOMICs, optimized for detecting chromosome alterations by combining allelic ratios and read counts generated by targeted NGS. Sensitivity for calling normal, lost, and gained chromosomes was 89%, 72%, and 31%, respectively. Specificity was 81%, 93%, and 98%, respectively. These results were confirmed in the validation set. Finally, TARGOMICs could efficiently align and compute proportions of methylated cytosines from bisulfite-converted DNA from targeted NGS. In conclusion, beyond calling mutations, targeted NGS efficiently calls chromosome alterations and methylation status in tumors. A single run and minor design/protocol adaptations are sufficient. Optimizing targeted NGS should expand translation of genomics to clinical routine.


Subject(s)
Biomarkers, Tumor , Chromosome Aberrations , DNA Methylation , High-Throughput Nucleotide Sequencing , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Alleles , Computational Biology/methods , CpG Islands , DNA Copy Number Variations , Diagnostic Tests, Routine/methods , Gene Frequency , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
9.
Br J Cancer ; 115(12): 1575-1583, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27875525

ABSTRACT

BACKGROUND: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality worldwide. CC pathogenesis is triggered when human papillomavirus (HPV) inserts into the genome, resulting in tumour suppressor gene inactivation and oncogene activation. Collecting tumour and blood samples is critical for identifying these genetic alterations. METHODS: BIO-RAIDs is the first prospective molecular profiling clinical study to include a substantial biobanking effort that used uniform high-quality standards and control of samples. In this European Union (EU)-funded study, we identified the challenges that were impeding the effective implementation of such a systematic and comprehensive biobanking effort. RESULTS: The challenges included a lack of uniform international legal and ethical standards, complexities in clinical and molecular data management, and difficulties in determining the best technical platforms and data analysis techniques. Some difficulties were encountered by all investigators, while others affected only certain institutions, regions, or countries. CONCLUSIONS: The results of the BIO-RAIDs programme highlight the need to facilitate and standardise regulatory procedures, and we feel that there is also a need for international working groups that make recommendations to regulatory bodies, governmental funding agencies, and academic institutions to achieve a proficient biobanking programme throughout EU countries. This represents the first step in precision medicine.


Subject(s)
Biological Specimen Banks , Uterine Cervical Neoplasms/pathology , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...