Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(49): 17994-18002, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29148757

ABSTRACT

Designing systems that merge the advantages of heterogeneous catalysis, enzymology, and molecular catalysis represents the next major goal for sustainable chemistry. Cross-linked enzyme crystals display most of these essential assets (well-designed mesoporous support, protein selectivity, and molecular recognition of substrates). Nevertheless, a lack of reaction diversity, particularly in the field of oxidation, remains a constraint for their increased use in the field. Here, thanks to the design of cross-linked artificial nonheme iron oxygenase crystals, we filled this gap by developing biobased heterogeneous catalysts capable of oxidizing carbon-carbon double bonds. First, reductive O2 activation induces selective oxidative cleavage, revealing the indestructible character of the solid catalyst (at least 30 000 turnover numbers without any loss of activity). Second, the use of 2-electron oxidants allows selective and high-efficiency hydroxychlorination with thousands of turnover numbers. This new technology by far outperforms catalysis using the inorganic complexes alone, or even the artificial enzymes in solution. The combination of easy catalyst synthesis, the improvement of "omic" technologies, and automation of protein crystallization makes this strategy a real opportunity for the future of (bio)catalysis.

2.
Chem Commun (Camb) ; 53(25): 3579-3582, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28289745

ABSTRACT

Artificial enzymes are required to catalyse non-natural reactions. Here, a hybrid catalyst was developed by embedding a novel Ru complex in the transport protein NikA. The protein scaffold activates the bound Ru complex to produce a catalyst with high regio- and stereo-selectivity. The hybrid efficiently and stably produced α-hydroxy-ß-chloro chlorohydrins from alkenes (up to 180 TON with a TOF of 1050 h-1).


Subject(s)
Alkenes/chemistry , Chlorohydrins/chemistry , Ruthenium/chemistry , Catalysis , Coordination Complexes/chemistry , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...