Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Biochem Genet ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864962

ABSTRACT

Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.

3.
J Sci Food Agric ; 104(4): 2272-2283, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37947475

ABSTRACT

BACKGROUND: Dietary interventions are crucial in modulating inflammation in humans. Strawberries are enjoyed by people of different ages as a result of their attractive phenotype and taste. In addition, the active compounds in strawberries may contribute to the reduction of inflammation. When developing new strawberry cultivars to address agricultural and environmental threats, the bioactivity of strawberries must be improved to maintain their health benefits. RESULTS: We determined the phytochemical contents of extracts from a new Korean strawberry cultivar, with the CN7 cultivar extract possessing the highest total polyphenol and flavonoid contents compared to the CN5 and Seolhyang cultivar extracts. The new Korean strawberry cultivars reduced the expression of inflammatory-related genes in lipopolysaccharide (LPS)-induced RAW264.7 cells via the nuclear factor-kappa B signaling pathway, indicating an anti-inflammatory effect. The CN7 cultivar showed greater bioactivity potential and the highest ellagic acid content; hence, we assessed the effect of the CN7 cultivar in an LPS-stimulated mouse model. The CN7 cultivar treatment demonstrated its effectiveness in reducing inflammation via the downregulation of inflammatory cytokines secretion and gene expression. CONCLUSION: The results obtained in the present study have revealed the observable differences of the newly developed strawberry cultivars with Seolhyang in mitigating inflammation induced by LPS. The enhanced phytochemical content of the CN7 cultivar extract may contribute to its improved anti-inflammatory effect. Therefore, it is crucial to maintain the nutritive benefits of strawberry during the development of new cultivation. © 2023 Society of Chemical Industry.


Subject(s)
Fragaria , Animals , Mice , Humans , Fragaria/chemistry , Lipopolysaccharides , Fruit/chemistry , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Phytochemicals/metabolism , Plant Extracts/analysis , Anti-Inflammatory Agents/metabolism , Macrophages , Republic of Korea
4.
Cancer Commun (Lond) ; 44(1): 127-172, 2024 01.
Article in English | MEDLINE | ID: mdl-38160327

ABSTRACT

The 2023 update of the Chinese Society of Clinical Oncology (CSCO) Clinical Guidelines for Gastric Cancer focuses on standardizing cancer diagnosis and treatment in China, reflecting the latest advancements in evidence-based medicine, healthcare resource availability, and precision medicine. These updates address the differences in epidemiological characteristics, clinicopathological features, tumor biology, treatment patterns, and drug selections between Eastern and Western gastric cancer patients. Key revisions include a structured template for imaging diagnosis reports, updated standards for molecular marker testing in pathological diagnosis, and an elevated recommendation for neoadjuvant chemotherapy in stage III gastric cancer. For advanced metastatic gastric cancer, the guidelines introduce new recommendations for immunotherapy, anti-angiogenic therapy and targeted drugs, along with updated management strategies for human epidermal growth factor receptor 2 (HER2)-positive and deficient DNA mismatch repair (dMMR)/microsatellite instability-high (MSI-H) patients. Additionally, the guidelines offer detailed screening recommendations for hereditary gastric cancer and an appendix listing drug treatment regimens for various stages of gastric cancer. The 2023 CSCO Clinical Guidelines for Gastric Cancer updates are based on both Chinese and international clinical research and expert consensus to enhance their applicability and relevance in clinical practice, particularly in the heterogeneous healthcare landscape of China, while maintaining a commitment to scientific rigor, impartiality, and timely revisions.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Medical Oncology , Immunotherapy , Neoadjuvant Therapy , China
5.
Huan Jing Ke Xue ; 44(8): 4706-4716, 2023 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-37694663

ABSTRACT

It is important to understand the spatial distribution characteristics and health risks of soil heavy metals for the implementation of soil pollution control measures in different levels and regions. Based on the data of 706 core studies in the last 20 years, the spatial distribution characteristics, accumulation degree, and health risks of soil heavy metals in China were analyzed at the provincial level. The results showed that the soil heavy metals had obvious spatial differences on the provincial scale, with an overall trend of "high in the south and low in the north and high in the east and low in the west." The content of heavy metals in the soil of agricultural land and construction land was high, and the rate of exceeding the standard was higher than that of other land types. Soil heavy metal concentrations in most areas of China were higher than the regional background values and were highly cumulative. The accumulation indices were:Cd(1.80)>Pb(0.23)>Cu(0.17)>Zn(-0.05)>As(-0.56)>Cr(-0.69), with more than 85% of the provincial soils reaching moderate levels of Cd pollution. Non-ferrous metal resource-based provinces such as Yunnan, Guizhou, Guangxi, Hunan, and Jiangxi generally had higher soil heavy metal levels than those in other provinces, and local children faced higher cancer risks. Soil pollution in coastal areas such as Fujian, Zhejiang, Jiangsu, and Tianjin mainly originated from industrial production and urbanization construction. High intensity agricultural utilization was an important cause of soil heavy metal accumulation in Henan, Shandong, and Anhui.

6.
Anal Chem ; 95(34): 12785-12793, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37565453

ABSTRACT

Studies on the adverse effects of nanoplastics (NPs, particle diameter <1000 nm) including physical damage, oxidative stress, impaired cell signaling, altered metabolism, developmental defects, and possible genetic damage have intensified in recent years. However, the analytical detection of NPs is still a bottleneck. To overcome this bottleneck and obtain a reliable and quantitative distribution analysis in complex freshwater ecosystems, an easily applicable NP tracer to simulate their fate and behavior is needed. Here, size- and surface charge-tunable core-shell Au@Nanoplastics (Au@NPs) were synthesized to study the environmental fate of NPs in an artificial freshwater system. The Au core enables the quantitative detection of NPs, while the polystyrene shell exhibits NP properties. The Au@NPs showed excellent resistance to environmental factors (e.g., 1% hydrogen peroxide solution, simulating gastric fluid, acids, and alkalis) and high recovery rates (>80%) from seawater, lake water, sewage, waste sludge, soil, and sediment. Both positively and negatively charged NPs significantly inhibited the growth of duckweed (Lemna minor L.) but had little effect on the growth of cyanobacteria (Microcystis aeruginosa). In addition, the accumulation of positively and negatively charged NPs in cyanobacteria occurred in a concentration-dependent manner, with positively charged NPs more easily taken up by cyanobacteria. In contrast, negatively charged NPs were more readily internalized in duckweed. This study developed a model using a core-shell Au@NP tracer to study the environmental fate and behavior of NPs in various complex environmental systems.


Subject(s)
Cyanobacteria , Microplastics , Bioaccumulation , Ecosystem , Fresh Water , Seawater , Polystyrenes
7.
Chemosphere ; 336: 139194, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315858

ABSTRACT

The environmental issues caused by nanoplastics (NPs) are increasingly noticeable. Environmental behavior study of the NPs could provide vital information for their environmental impact assessment. However, associations between NPs' inherent properties and their sedimentation behaviors were seldom investigated. In this study, six types of PSNPs (polystyrene nanoplastics) with different charges (positive and negative) and particle sizes (20-50 nm, 150-190 nm and 220-250 nm) were synthesized, and their sedimentations under different environmental factors, (e.g., pH value, ionic strength (IS), electrolyte type and natural organic matter) were investigated. Results displayed that both particle size and surface charge would affect the sedimentation of PSNPs. The maximum sedimentation ratio of 26.48% was obtained in positive charged PSNPs with size of 20-50 nm, while the minimum sedimentation ratio of 1.02% was obtained in negative charged PSNPs with size of 220-250 nm at pH 7.6. The pH value shift (range of 5-10) triggered negligible changes of sedimentation ratio, the average particle size and the Zeta potential. Small size PSNPs (20-50 nm) showed higher sensitivity to IS, electrolyte type and HA condition than large size PSNPs. At high IS value ( [Formula: see text]  = 30 mM or ISNaCl = 100 mM), the sedimentation ratios of the PSNPs all increased differently according to their properties, and the sedimentation promoting effect of CaCl2 was more significant on negative charged PSNPs than positive charged PSNPs. When [Formula: see text] increased from 0.9 to 9 mM, the sedimentation ratios of negative charged PSNPs increased by 0.53%-23.49%, while that of positive charged PSNPs increased by less than 10%. Besides, humic acid (HA) addition (1-10 mg/L) would lead to a stable suspension status for PSNPs in water with different degree and perhaps different mechanism due to their charge characteristics. These results showed new light on influence factor studies of NPs' sedimentation and would be helpful for further knowledge of NPs' environmental behaviors.


Subject(s)
Microplastics , Polystyrenes , Polystyrenes/chemistry , Osmolar Concentration , Fresh Water , Humic Substances , Electrolytes
8.
FASEB J ; 37(7): e23016, 2023 07.
Article in English | MEDLINE | ID: mdl-37358556

ABSTRACT

This study aimed to investigate the regeneration of epithelial cells in the long-term observation of ureter reconstruction by excising the demucosalized ileum. First, 8 Beagle dogs were anesthetized and the abdominal cavity was inspected for abnormalities via an abdominal incision. The right kidney and ureter were subsequently separated, and the ureter was severed from its connection to the renal pelvis and bladder and ligated distally. The 10-15 cm of ileum was used to reconstruct the ureter. The biopsies of the proximal, middle, and distal reconstructed ureter (neo-ureter) were collected at the first, third, fifth, and sixth month postoperatively. The regeneration of ileal mucosa at the first, third, fifth, and sixth month was observed by hematoxylin-eosin (HE) staining and immunofluorescence staining cytokeratin 18 (CK18). HE staining results showed irregular cytoarchitecture, severe nuclear consolidation, and inflammatory infiltration in the proximal, middle, and distal neo-ureters of dogs at the first month after ureteral reconstruction. With longer follow-up, the injuries of the proximal, middle, and distal neo-ureters were alleviated at the third, fifth, and sixth month after surgery. The expression of CK18 was higher in the middle neo-ureters than that in the proximal and distal neo-ureters at different time points after ureteral reconstruction and decreased with time. In summary, the present study demonstrated that demucosalized ileum was feasible for ureteral reconstructive surgery with satisfying prognostic effects.


Subject(s)
Surgery, Plastic , Ureter , Animals , Dogs , Ureter/surgery , Ureter/injuries , Ureter/pathology , Feasibility Studies , Ileum/surgery , Epithelial Cells
9.
Ther Adv Chronic Dis ; 13: 20406223221125683, 2022.
Article in English | MEDLINE | ID: mdl-36407018

ABSTRACT

Von Willebrand factor (VWF) is a glycoprotein synthesized and secreted by vascular endothelial cells and megakaryocytes, found on plasma surface, endothelial cells, and α-granule of platelets. VWF can be interacted with collagen and platelet membrane glycoproteins GPIb and GPIb-IIa and play an important role in platelet adhesion and aggregation. Growing research evidence suggests that VWF also mediates the prevention or protesting of hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients from several clinical studies. While the mechanism of VWF in HCC protection or protest is still unclear, further study is required. This article aims to rationalize the role of VWF in the development of HCC, and the functional domain of VWF in cancer as well as cross-talking with platelets and miRNAs. This article also looks forward to the future development and challenges of VWF research.

10.
Toxicol Appl Pharmacol ; 451: 116180, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35907586

ABSTRACT

Protein tyrosine phosphatase non-receptor type 21 (PTPN21) has been recognised as a new tumour-associated protein that is implicated in diverse tumours. However, the correlation between PTPN21 and glioma remains unaddressed. This investigation focused on the relevance of PTPN21 in glioma. The Cancer Genome Atlas (TCGA) analysis identified PTPN21 as being up-regulated in glioma tissue. The elevation of PTP21 in glioma was validated by evaluating clinical specimen. Kaplan-Meier plot analysis revealed that a high PTPN21 level predicted poor survival rate in glioma patient. Silencing of PTPN21 produced remarkable anticancer effects in glioma cells including proliferation inhibition, cell cycle arrest, metastasis suppression and enhanced chemosensitivity. Mechanistic studies uncovered that PTPN21 contributes to mediation of the phosphatidyl-inositole-3 kinase (PI3K)/AKT pathway via the regulation of epidermal growth factor receptor (EGFR). Restraint of EGFR diminished PTPN21 overexpression-induced promoting effect on PI3K/AKT pathway. Reactivation of AKT reversed PTPN21 silencing-evoked antitumor effect. The tumorigenic potential of PTPN21-silenced glioma cells in vivo was markedly compromised. In summary, this study demonstrates that silencing of PTPN21 produces remarkable anticancer effects in glioma by restraining the EGFR/PI3K/AKT pathway.


Subject(s)
Glioma , Phosphatidylinositol 3-Kinases , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
11.
Bioresour Technol ; 359: 127454, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35697261

ABSTRACT

Humic acids (HAs) are abundant on earth, yet their effects on anaerobic digestion (AD) of cellulosic substrate are not fully uncovered. The effects of HAs on AD of corn straw and the mechanisms behind were analyzed in this study. Results showed that the effects of HAs on methane yield were closely related to the total solids (TS) content. At relative high TS content of 5.0%, HAs benefited AD process by increasing 13.8% of methane yield, accelerating methane production rate by 43% and shortening lag phase time by 37.5%. Microbial community analysis indicated that HAs increased the relative abundance of syntrophic bacteria (Syntrophomonadaceae and Synergistaceae), facilitating the degradation of volatile fatty acids. HAs might act as electron shuttles to directly transfer electrons to hydrogenotrophic methanogens for CO2 reduction to CH4. This study provides a simple and efficient strategy to facilitate the AD of cellulosic substrate by HAs addition.


Subject(s)
Bioreactors , Zea mays , Anaerobiosis , Bacteria , Humic Substances , Methane
12.
BMC Surg ; 22(1): 85, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246092

ABSTRACT

BACKGROUND: Thoracic spinal stenosis (TSS) caused by ossification of the ligamentum flavum (OLF) is generally treated by surgical decompression. In this study, we compared the efficacy and safety of percutaneous endoscopic thoracic decompression (PETD) and posterior thoracic laminectomy (PTL) for treating thoracic ossification of the ligamentum flavum (TOLF). METHODS: Twenty consecutive patients with TSS caused by TOLF who were treated between April 2016 and May 2020 were included in this retrospective study. They were divided into the PETD (n = 11) and PTL (n = 9) groups. The mean follow-up period was 19.6 months. The visual analogue scale (VAS) score, the modified Japanese Orthopedic Association (mJOA) score and the recovery rate (RR) were used to evaluate the clinical outcomes. RESULTS: There were significant differences between PETD group and PTL group in operative time (min) (95.0 ± 18.8 vs 131.1 ± 19.0), postoperative drainage (mL) (20.2 ± 7.9 vs 586.1 ± 284.2), hospital stay (days) (4.4 ± 1.2 vs 10.4 ± 2.6) (P < 0.05 for all). However, both groups had similar and significant improvement in VAS and mJOA scores. The RR of two groups achieved the same improvement (81.8% VS 77.8%, P > 0.05). CONCLUSIONS: The use of PETD and PTL for treating TOLF both achieved favorable outcomes. PETD is both minimally invasive and achieves similar postoperative symptom relief to PTL. Therefore, PETD could be considered as an effective alternative to traditional open surgery for TOLF in single-segment lower thoracic spine.


Subject(s)
Ligamentum Flavum , Ossification, Heterotopic , Decompression, Surgical , Humans , Laminectomy , Ligamentum Flavum/surgery , Ossification, Heterotopic/surgery , Osteogenesis , Retrospective Studies , Thoracic Vertebrae/surgery , Treatment Outcome
13.
J Chem Neuroanat ; 121: 102086, 2022 04.
Article in English | MEDLINE | ID: mdl-35257878

ABSTRACT

INTRODUCTION: Our previous work has shown that somatostatin effectively inhibits neuropathic pain by activating its type 2 receptor (SSTR2) in the dorsal root ganglion (DRG) and spinal cord of mice. However, the underlying mechanism of this activation has not been elucidated. METHODS: To explore further mechanisms, we examined pain behavior and the expression of neuropeptides such as calcitonin gene-related peptide (CGRP) in dorsal root ganglion neurons(DRGs) as well as the changes of the number of CGRP-IR DRGs in the mouse model of sciatic pinch nerve injury. RESULTS: In this model, the number of medium and small DRG neurons in ipsilateral CGRP-IR was slightly increased, but not significantly, compared with sham animals at 3, 7, and 9 days after pinch nerve injury. This correlated with the behavioral readouts of hypersensitivity at the same time points. However, the magnitude of the painful behavior (Autotomy) was observed after application of SSTR2 antagonist (CYN154806, 5 mg/kg) in the injured nerve groups compared to the saline-treated injured group as well as the sham-operated group. Following pinch nerve injury, there was a significant decrease in the number of ipsilateral CGRP-IR small and medium DRG neurons in SSTR2 antagonist (anti-SSTR2)- but not saline-treated mice. These data also correlated with painful behavioral readouts where hypersensitivity was significantly increased by anti-SSTR2 but not saline treatment. DISCUSSION/CONCLUSION: In all, application of the SSTR2 antagonist to the pinched sciatic nerve suppressed CGRP expression and aggravated painful behavior, suggesting that CGRP expression in DRG neurons can be an important component of the pain mechanism and an indicator of pain behavior.


Subject(s)
Ganglia, Spinal , Neuralgia , Receptors, Somatostatin/metabolism , Animals , Calcitonin Gene-Related Peptide/metabolism , Ganglia, Spinal/metabolism , Mice , Neuralgia/metabolism , Rats, Sprague-Dawley , Somatostatin/metabolism
14.
Front Plant Sci ; 13: 1002606, 2022.
Article in English | MEDLINE | ID: mdl-36605957

ABSTRACT

Huanglongbing (HLB), or citrus greening disease, has complex and variable symptoms, making its diagnosis almost entirely reliant on subjective experience, which results in a low diagnosis efficiency. To overcome this problem, we constructed and validated a deep learning (DL)-based method for detecting citrus HLB using YOLOv5l from digital images. Three models (Yolov5l-HLB1, Yolov5l-HLB2, and Yolov5l-HLB3) were developed using images of healthy and symptomatic citrus leaves acquired under a range of imaging conditions. The micro F1-scores of the Yolov5l-HLB2 model (85.19%) recognising five HLB symptoms (blotchy mottling, "red-nose" fruits, zinc-deficiency, vein yellowing, and uniform yellowing) in the images were higher than those of the other two models. The generalisation performance of Yolov5l-HLB2 was tested using test set images acquired under two photographic conditions (conditions B and C) that were different from that of the model training set condition (condition A). The results suggested that this model performed well at recognising the five HLB symptom images acquired under both conditions B and C, and yielded a micro F1-score of 84.64% and 85.84%, respectively. In addition, the detection performance of the Yolov5l-HLB2 model was better for experienced users than for inexperienced users. The PCR-positive rate of Candidatus Liberibacter asiaticus (CLas) detection (the causative pathogen for HLB) in the samples with five HLB symptoms as classified using the Yolov5l-HLB2 model was also compared with manual classification by experts. This indicated that the model can be employed as a preliminary screening tool before the collection of field samples for subsequent PCR testing. We also developed the 'HLBdetector' app using the Yolov5l-HLB2 model, which allows farmers to complete HLB detection in seconds with only a mobile phone terminal and without expert guidance. Overall, we successfully constructed a reliable automatic HLB identification model and developed the user-friendly 'HLBdetector' app, facilitating the prevention and timely control of HLB transmission in citrus orchards.

15.
Sci Total Environ ; 818: 151762, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34800454

ABSTRACT

Using a batch anaerobic system constructed with 60 mL serum bottles, potential of a composite material with Fe2O3 nanoparticles decorated on carbon nanotubes (CNTs) to enhance biomethane production was investigated. The composites (Fe2O3@CNTs) with well dispersed Fe2O3 nanoparticles (4.5 nm) were fabricated by a facile thermal decomposition method in a muffle furnace under nitrogen atmosphere. Compared with Fe2O3, Fe2O3@CNTs showed a large specific surface area and good electrical conductivity. Supplementation of Fe2O3@CNTs to the propionate-degrading enrichments enhanced the methane production rate, which was 10.4-fold higher than that in the control experiment without material addition. The addition of Fe2O3@CNTs also not only showed a clearly electrochemical response to flavin and cytochrome C, but also reduced the electron transfer resistance when compared to the control. Comparative analysis showed that Fe2O3 in Fe2O3@CNTs played a key role in initiating electrochemical response and triggering rapid methane production, while CNTs functioned as rapid electron conduits to facilitate electron transfer from iron-reducing bacteria (e.g., Acinetobacter, Syntrophomonas, and Geobacter) to methanogens (e.g. Methanosarcina).


Subject(s)
Nanotubes, Carbon , Propionates , Electron Transport , Methane , Methanosarcina
16.
Cancer Commun (Lond) ; 41(8): 747-795, 2021 08.
Article in English | MEDLINE | ID: mdl-34197702

ABSTRACT

There exist differences in the epidemiological characteristics, clinicopathological features, tumor biological characteristics, treatment patterns, and drug selections between gastric cancer patients from the Eastern and Western countries. The Chinese Society of Clinical Oncology (CSCO) has organized a panel of senior experts specializing in all sub-specialties of gastric cancer to compile a clinical guideline for the diagnosis and treatment of gastric cancer since 2016 and renews it annually. Taking into account regional differences, giving full consideration to the accessibility of diagnosis and treatment resources, these experts have conducted expert consensus judgment on relevant evidence and made various grades of recommendations for the clinical diagnosis and treatment of gastric cancer to reflect the value of cancer treatment and meeting health economic indexes in China. The 2021 CSCO Clinical Practice Guidelines for Gastric Cancer covers the diagnosis, treatment, follow-up, and screening of gastric cancer. Based on the 2020 version of the CSCO Chinese Gastric Cancer guidelines, this updated guideline integrates the results of major clinical studies from China and overseas for the past year, focused on the inclusion of research data from the Chinese population for more personalized and clinically relevant recommendations. For the comprehensive treatment of non-metastatic gastric cancer, attentions were paid to neoadjuvant treatment. The value of perioperative chemotherapy is gradually becoming clearer and its recommendation level has been updated. For the comprehensive treatment of metastatic gastric cancer, recommendations for immunotherapy were included, and immune checkpoint inhibitors from third-line to the first-line of treatment for different patient groups with detailed notes are provided.


Subject(s)
Stomach Neoplasms , China , Humans , Medical Oncology , Societies, Medical , Stomach Neoplasms/diagnosis , Stomach Neoplasms/drug therapy
17.
Curr Microbiol ; 78(8): 2916-2925, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34047833

ABSTRACT

Botryosphaeria dothidea is one of the most important diseases which can cause poplar canker. In our previous study, the endophytic Bacillus subtilis N6-34 screened from poplar tissue was found to be an antagonistic strain against B. dothidea. In order to ascertain the colonization rule of B. subtilis N6-34 in poplar plants, colonization of B. subtilis N6-34 labeled with a green fluorescent protein (GFP) was investigated in poplar plants and the rhizosphere soil. To confirm the inhibitory effect of the strain N6-34 on pathogenic fungi, real-time fluorescent quantitative PCR experiment with Fusarium oxysporum as the target strain was carried out. Firstly, a plasmid (pHT01-P43GFPmut3a) containing gfp gene was successfully transformed into wild B. subtilis N6-34, which has the similar characteristics with the strain N6-34 in cell growth and antifungal activity. The poplar pot experiments were carried out to examine the colonization rules and colonization quantity in poplar plants and rhizosphere soil. Observation with a confocal laser scanning microscope showed that GFP-labeled B. subtilis N6-34 (N6-34-GFP) could colonize in primary root, lateral root and adventitious root. With the extension of inoculation time, the colonization quantity of N6-34-GFP in the rhizosphere soil and poplar plants showed a trend of first increasing, then stabilizing for a period of time and then decreasing. The real-time fluorescent quantitative PCR result showed a gradual decrease in the number of F. oxysporum with increasing inoculation time. Therefore, N6-34-GFP exhibited colonization in the rhizosphere soil and different parts of poplar plants. In addition, the strain N6-34 could inhibit the growth of pathogenic fungi. The ability of B. subtilis N6-34 to colonize in the rhizosphere soil and poplar plants and to inhibit fungal growth in vitro suggest a potential application of this strain as a biological control agent.


Subject(s)
Mycoses , Plant Diseases , Ascomycota , Fusarium , Plant Diseases/prevention & control , Plant Roots , Polymerase Chain Reaction , Soil Microbiology
18.
Stem Cell Res Ther ; 12(1): 108, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33541442

ABSTRACT

BACKGROUND: Bone fracture repair has gained a lot of attention due to the high incidence of delayed union or even nonunion especially in osteoporotic patients, resulting in a dreadful impact on the quality of life. However, current therapies involve the costly expense and hence become unaffordable strategies for fracture recovery. Herein, developing new strategies for better bone repair is essential and urgent. Catalpol treatment has been reported to attenuate bone loss and promote bone formation. However, the mechanisms underlying its effects remain unraveled. METHODS: Rat bone marrow mesenchymal stem cells (BMSCs) were isolated from rat femurs. BMSC osteogenic ability was assessed using ALP and ARS staining, immunofluorescence, and western blot analysis. BMSC-mediated angiogenic potentials were determined using the western blot analysis, ELISA testing, scratch wound assay, transwell migration assay, and tube formation assay. To investigate the molecular mechanism, the lentivirus transfection was used. Ovariectomized and sham-operated rats with calvaria defect were analyzed using micro-CT, H&E staining, Masson's trichrome staining, microfil perfusion, sequential fluorescent labeling, and immunohistochemistry assessment after administrated with/without catalpol. RESULTS: Our results manifested that catalpol enhanced BMSC osteoblastic differentiation and promoted BMSC-mediated angiogenesis in vitro. More importantly, this was conducted via the JAK2/STAT3 pathway, as knockdown of STAT3 partially abolished beneficial effects in BMSCs. Besides, catalpol administration facilitated bone regeneration as well as vessel formation in an OVX-induced osteoporosis calvarial defect rat model. CONCLUSIONS: The data above showed that catalpol could promote osteogenic ability of BMSC and BMSC-dependent angiogenesis through activation of the JAK2/STAT3 axis, suggesting it may be an ideal therapeutic agent for clinical medication of osteoporotic bone fracture.


Subject(s)
Mesenchymal Stem Cells , Osteoporosis , Animals , Cell Differentiation , Cells, Cultured , Humans , Iridoid Glucosides , Osteogenesis , Osteoporosis/drug therapy , Quality of Life , Rats , STAT3 Transcription Factor/genetics
19.
Environ Pollut ; 275: 116485, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33556732

ABSTRACT

Magnetic biochars were prepared by chemical co-precipitation of Fe3+/Fe2+ onto rice straw (M-RSB) and sewage sludge (M-SSB), followed by pyrolysis treatment, which was also used to prepare the corresponding nonmagnetic biochars (RSB and SSB). The comparison of adsorption characteristics between magnetic and nonmagnetic biochars was investigated as a function of pH, contact time, and initial Cd2+ concentration. The adsorption of nonmagnetic biochars was better described by pseudo-second-order kinetic model, and the adsorption of RSB and SSB was better described by Langmuir and Freundlich models, respectively. Magnetization of the biochars did not change the applicability of their respective adsorption models, but reduced their adsorption capabilities. The maximum capacities were 42.48 and 4.64 mg/g for M-RSB and M-SSB, respectively, underperforming their nonmagnetic counterparts of 58.65 and 7.22 mg/g for RSB and SSB. Such a reduction was fundamentally caused by the decreases in the importance of cation-exchange and Cπ-coordination after magnetization, but the Fe-oxides contributed to the precipitation-dependent adsorption capacity for Cd2+ on magnetic biochars. The qualitative and quantitative characterization of adsorption mechanisms were further analyzed, in which the contribution proportions of cation-exchange after magnetization were reduced by 31.9% and 12.1% for M-RSB and M-SSB, respectively, whereas that of Cπ-coordination were reduced by 3.4% and 31.1% for M-RSB and M-SSB, respectively. These reductions suggest that for adsorbing Cd2+ the choice of conventional biochar was more relevant than whether the biochar was magnetized. However, magnetic biochars are easily separated from treated solutions, depending largely on initial pH. Their easy of separation suggests that magnetic biochars hold promise as more sustainable alternatives for the remediation of moderately Cd-contaminated environments, such as surface water and agriculture soil, and that magnetic biochars should be studied further.


Subject(s)
Cadmium , Charcoal , Adsorption , Magnetic Phenomena , Water
20.
Chemosphere ; 272: 129594, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33476793

ABSTRACT

Adsorption characteristics of Cd2+ on the three biochars modified by pyrolysis and calcination were investigated that were derived from rice straw (TRSB), chicken manure (TCMB) and sewage sludge (TSSB). The pH effect, adsorption kinetics, isotherms and thermodynamics, and desorption were determined, and qualitative analysis of adsorption mechanisms was performed by SEM, XRD, FTIR and XPS. Maximum adsorption capacities reached 177.28, 96.03 and 74.04 mg/g for TCMB, TRSB and TSSB, respectively, which were higher than that of many previously reported biochars. Even after five adsorption-desorption cycles, TCMB showed the strongest reusability without losing significantly adsorption capacity. This suggested that thermally modified biochars, particularly TCMB, could be a preferred adsorbent for Cd2+. Relative distribution of adsorption mechanisms was examined by direct and indirect calculation, in which the precipitation and cation-exchange dominated the whole chemisorption process, jointly accounting for 84% (TRSB) to 95% (TCMB) of total adsorption. While the complexation was of minor importance in total adsorption accounting for 5%-16%. The relationship of each mechanism with the properties of biochar was also discussed. These provided new insights on the adsorption effectiveness and mechanisms for Cd2+ in the aqueous solution that was critical for evaluating the application of modified biochars.


Subject(s)
Cadmium , Charcoal , Adsorption , Pyrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...