Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 24(34): 345605, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23912629

ABSTRACT

We report here a novel synthetic method to prepare monodisperse air-stable FeCo nanoparticles with average sizes of 8, 12 and 20 nm. CoFe2O4 nanoparticles of different sizes were first synthesized by a chemical solution method. The as-synthesized CoFe2O4 nanoparticles were then mixed with ball-milled NaCl powders and heated to 400-500 ° C in forming gas (Ar 93%+H2 7%). The salt powder worked as a separating medium that prevents the CoFe2O4 nanoparticles from agglomerating during the heat treatment while the forming gas reduces the CoFe2O4 nanoparticles to FeCo nanoparticles. Monodisperse FeCo nanoparticles were recovered by dissolving the NaCl in water and subsequently washing with ethanol and acetone. Structural analyses confirmed that FeCo nanoparticles retained the same size as their oxide precursors. The size of the FeCo nanoparticles can be well tuned by controlling the size of the CoFe2O4 nanoparticles. The saturation magnetization of FeCo nanoparticles is size dependent and increases with size.

2.
Nanotechnology ; 19(35): 355601, 2008 Sep 03.
Article in English | MEDLINE | ID: mdl-21828852

ABSTRACT

FePt nanorods and nanowires have been synthesized by the reduction of Pt(acac)(2) and the thermal decomposition of Fe(CO)(5) in the presence of solvents/surfactants by simply controlling the sequence of addition of surfactants. The as-synthesized FePt nanorods and nanowires have a face centered cubic structure with average diameter of 3 nm. Length of nanorods and nanowires can be adjusted in the range of 15-150 nm by varying reaction parameters. Nanocrystalline L1(0) FePt phase with coercivity up to 24 kOe was obtained after heat treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...