Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chemistry ; 29(26): e202300062, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36806259

ABSTRACT

Adjusting the crystal phase of a metal alloy is an important method to optimize catalytic performance. However, detailed understanding about the phase-property relationship for the hydrogen evolution reaction (HER) is still limited. In this work, the crystal phase-activity relationship of NiRu nanoparticles is studied employing N-doped carbon shell coated NiRu nanoparticles with different phase contents. It is found that the NiRu@NC (mix) with both face-centred cubic (fcc) and thermodynamically unstable hexagonal close-packed (hcp) phase NiRu give the best HER performance. Further activity studies demonstrate that hcp NiRu has better HER performance, and NiRu@NC (mix) with rich (∼70 %) hcp phase presented outstanding performance with an overpotential of only 27 mV @ 10 mA ⋅ cm-2 . The high HER activity of NiRu@NC (mix) is attributed to the formation of hcp phase. This finding indicates that the regulation of crystal structure can provide a new strategy for optimizing HER activity.

2.
Adv Mater ; 34(32): e2203153, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35635220

ABSTRACT

Aqueous zinc ion batteries (ZIBs) have been extensively investigated as a next-generation energy storage system due to their high safety and low cost. However, the critical issues of irregular dendrite growth and intricate side reactions severely restrict the further industrialization of ZIBs. Here, a strategy to fabricate a semi-immobilized ionic liquid interface layer is proposed to protect the Zn anode over a wide temperature range from -35 to 60 °C. The immobilized SiO2 @cation can form high conjugate racks that can regulate the Zn2+ concentration gradient and self-polarizing electric field to guarantee uniform nucleation and planar deposition; the free anions of the ILs can weaken the hydrogen bonds of the water to promote rapid Zn2+ desolvation and accelerate ion-transport kinetics simultaneously. Because of these unique advantages, the cycling performance of the symmetric Zn batteries is greatly enhanced, evidenced by a cycling life of 1800 h at 20 mA cm-2 , and a cycle lifespan of 2000 h under a wide temperature window from -35 to 60 °C. The efficiency of this semi-immobilizing strategy is well demonstrated in various full cells including pouch cells, showing high performance at large current (20 A g-1 ) and wide temperatures with extra-long cycles up to 80 000 cycles.

3.
Article in English | MEDLINE | ID: mdl-35639877

ABSTRACT

The activation of the C-H bond, a necessary step to get high-value-added compounds, is one of the most important issues in modern catalysis. Combining the advantages of both homogeneous and heterogeneous catalysis, a certain continuous homogeneous process should be one of the ideal routes for the catalytic activation of C-H bonds. Here, through machine learning (ML), we predicted and fabricated metal-free carbon dot (C-Dot) homogeneous catalysts for C-H bond oxidation. These C-Dots have an ascorbic acid unit based polymer-like structure with a polymerization degree in the range of 3-10. With C-Dots as the catalyst, three groups (aliphatic, aromatic, and cycloalkanes) of 10 hydrocarbon molecules were tested, proving its generality for the catalytic oxidation of the C-H bond. A typical example of cyclohexane that was selectively oxidized to adipic acid (AA) by using a circulation and phase-transfer process demonstrates its critical advantages, such as the continuous and large-scaled producing ability of the homogeneous catalysis process. The one-pass conversion efficiency of cyclohexane to AA reaches 77.49% with selectivity up to 84.24% in 4 h. The yield of 16.32% per hour is about 4 times over that of modern technology. Theoretical calculations suggested that the O2 activation on C-Dots plays a crucial role in determining the reaction rate of the entire catalytic oxidation process of cyclohexane.

4.
Bioresour Technol ; 348: 126779, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35104651

ABSTRACT

To achieve ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella pyrenoidosa-based photo-fermentation, light-emitting diode (LED) spectrum was firstly evaluated in 5-L glass photo-fermenter with surrounding LED panels. Results showed that warm white LED was favorable to improve biomass yield and recovery rate of nutrients than mixed white LED. When scaling up from laboratory (50-L, 500-L) to pilot scale photo-fermenter with inner LED panels, the maximum recovery rates of NO3- (5.77 g L-1 d-1) and PO43- (0.44 g L-1 d-1) were achieved in 10,000-L photo-fermenter, along with high productivity of biomass (11.06 g L-1 d-1), protein (3.95 g L-1 d-1) and lipids (3.79 g L-1 d-1), respectively. This study demonstrated that photo-fermenter with inner warm white LED illumination is a superhigh-efficient system for nitrate and phosphate recovery with algal biomass coproduction, providing a promising application in pilot demonstration of wastewater bioremediation and facilitating novel facility development for green manufacturing.


Subject(s)
Chlorella , Microalgae , Biomass , Fermentation , Laboratories , Lighting , Nitrates , Nitrogen , Wastewater
5.
J Colloid Interface Sci ; 608(Pt 2): 1278-1285, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34739991

ABSTRACT

Graphene encapsulating 3d transition metal nanoparticles (Ni, Co, Fe@G) are successfully fabricated through pyrolysis of complexes which are simply prepared via "acid-base reactions" between metal hydroxides and carboxylic acid such as citric acid. In particular, the Ni@G catalyst exhibits outstanding catalytic activity and selectivity (>99%) toward the reduction of various nitroaromatics under mild conditions (1 MPa H2, 60 °C), even in the presence of poisons (CO and thiophene etc.). This "acid-base reactions" based method provides a facile and scalable approach to prepare graphene encapsulating 3d transition metals with wide ranges of applications.

6.
ACS Omega ; 6(10): 6798-6809, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748593

ABSTRACT

Biphasic systems have received increasing attention for acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural (HMF) because of their high efficiency in in situ extraction and stabilization of HMF. Different organic solvents and acid catalysts were applied in these systems, but their effects on the dehydration activity and HMF yield, and the recycling of homogeneous acid catalysts remain largely unexplored. Here, we tested different solvent systems containing a wide range of organic solvents with low boiling points to study the effects of their chemical structures on fructose dehydration and provided stable H2O-dioxane and H2O-acetonitrile biphasic systems with high HMF yields of 76-79% using water-soluble sulfonic derivatives as homogeneous acid catalysts under mild conditions (383 K). By analyzing the partition coefficients of HMF and sulfonic derivatives, 94.3% of HMF and 87.1% of NH2SO3H were, respectively, restrained in the dioxane phase and aqueous phase in the H2O-dioxane biphasic system and easily divided by phase separation. The effects of the adjacent group in sulfonic derivatives and reaction temperature on fructose conversions and HMF yields suggest that in a specific biphasic system, the catalysts' acidity and reaction conditions significantly affect the fructose dehydration activity but hardly influence the optimal yield of HMF, and an almost constant amount of carbon loss was observed mainly due to the poor hydrothermal stability of fructose. Such developments offer a promising strategy to address the challenge in the separation and recycling of homogeneous acid catalysts in the practical HMF production.

7.
ACS Appl Mater Interfaces ; 13(5): 6219-6228, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33499601

ABSTRACT

Ir-based heterogeneous catalysts for photocatalytic CO2 reduction have rarely been reported and are worthy of investigation. In this work, TiO2 nanosheets with a higher specific surface area and more oxygen vacancies were employed to support Ir metal by impregnation (Imp) and ethylene glycol (EG) reduction methods. In comparison with Ir/TiO2 (Imp) and TiO2, Ir/TiO2 (EG) exhibited excellent photocatalytic performance toward CO2 reduction, especially for CH4 production on account of the oxygen defect of TiO2 and rich surface hydroxyl groups produced from the interaction between TiO2 nanosheets and metallic Ir. In situ ESR suggested that the oxygen defect was significant for CO2 adsorption/activation. Furthermore, metallic Ir was beneficial for photogenerated electron transfer, surface hydroxyl generation, and adsorption of the CO intermediate, generating more available electrons and reducing agents for CH4 production. In situ CO2 DRIFTS confirmed the key synergistic interaction between the oxygen defect and metallic Ir in the photoreduction from CO2 to CH4.

8.
Front Bioeng Biotechnol ; 8: 603513, 2020.
Article in English | MEDLINE | ID: mdl-33511104

ABSTRACT

The stressed cultivations are widely used in microalgae R&D for the biofuel production with the repress on growth to a certain degree, which limits the overall productivity. The balance between the growth and energy storage compounds accumulation is a target needing the combination of both strain selection or construction and culture optimization. Here, an engineered strain of Chlamydomonas reinhardtii, in which the chloroplast type glyceraldehyde-3-phosphate dehydrogenase (cGAPDH) was overexpressed and named as P3-GAPDH, was cultured on the Algal Station platform. Compared with wild type (WT), C. reinhardtii CC137c, in Tris-acetate-phosphate (TAP) medium, the highest density of WT and P3-GAPDH were 1.23 ± 0.13 and 1.74 ± 0.09 g L-1 within 96 h, and the maximum biomass productivity was 24.30 ± 1.65 and 28.54 ± 1.43 mg L-1 h-1, respectively. In terms of the energy storage compounds, both carbohydrate and fatty acids content doubled in P3-GAPDH, from 0.13 ± 0.02 to 0.26 ± 0.04 g L-1 for carbohydrate and from 0.08 ± 0.01 to 0.16 ± 0.01 g L-1 for fatty acids, among which poly unsaturated fatty acids increased by 65.8%. Together with the continuous monitor of the chlorophyll fluorescence dynamics parameters F v/F m and F v'/F m' and pH of culture, enhanced Calvin cycle by overexpressed cGAPDH promoted the carbon conversion and subsequent energy storage compounds accumulation. C. reinhardtii P3-GAPDH strain showed the potential as a good chassis with high carbon conversion ability.

9.
Bioresour Technol ; 292: 122037, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31474540

ABSTRACT

Nitrogen oxides (NOx) are the components of fossil flue gases that give rise to serious environmental and health hazards. Among the available techniques for NOx removal, microalgae-based biological removal of NOx (BioDeNOx) is a promising and competent technology with eco-friendly path of low energy and low-cost solution for the pollution. In this review article, current biological technologies including bacteria-based and microalgae-related BioDeNOx are discussed. Comparing to direct BioDeNOx approach, indirect BioDeNOx by microalgae is more promising since it is more stable, reliable and efficient. By transforming inorganic nitrogen nutrients to organic nitrogen, microalgae can potentially play an important role in converting NOx into high-value added products. The microalgae-based BioDeNOx process displays an attractive prospect for flue gas treatment to reduce environmental NOx pollution and potentially supply protein products, establishing an efficient circular-economy strategy.


Subject(s)
Microalgae , Gases , Nitrogen , Nitrogen Oxides
10.
ChemSusChem ; 11(3): 536-541, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29292853

ABSTRACT

Activated carbon (AC) has been widely used in the catalysis field because of its low cost, scalable production, high specific surface area, and abundant exposed edge. Because of the amorphous structure, traditional AC is unstable in presence of O2 at high temperature, which hinders the application of AC catalysts in oxidative dehydrogenation (ODH) of alkanes. Here, partially graphitic AC decorated with few-layer graphene is facilely fabricated by simple high-temperature calcination. The graphitic transformation significantly enhances the antioxidation property, long-term stability of AC during the ODH reaction, and especially dramatically increases the graphitic edge areas in which the active ketonic carbonyl groups are selectively formed in ODH reactions. A high reactivity with 41.5 % selectivity and 13.2 % yield to C4 alkenes were obtained at 450 °C over the optimized catalyst, which is superior to all the previously reported carbon catalysts and shows a great potential for industrial application.


Subject(s)
Carbon/chemistry , Graphite/chemistry , Butanes/chemistry , Catalysis , Hot Temperature , Hydrogen/chemistry , Hydrogenation , Metals/chemistry , Oxidation-Reduction
11.
RSC Adv ; 8(27): 15094-15101, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-35541329

ABSTRACT

Rigid oxygen-deficient TiO2-x coated mesoporous hollow Si nanospheres with a mechanically and electrically robust structure have been constructed through a facile method for high-performance Li-ion battery anodes. The mesoporous hollow structure provides enough inner void space for the expansion of Si. The oxygen-deficient TiO2-x coating has functions in three aspects: (1) avoiding direct contact between Si and the electrolyte; (2) suppressing the outward expansion of the mesoporous hollow Si nanospheres; (3) improving the conductivity of the composite. The combined effect leads to high interfacial stability and structural integrity of both the material nanoparticles and the whole electrode. By virtue of the rational design, the composite yields a high reversible specific capacity of 1750.4 mA h g-1 at 0.2 A g-1, an excellent cycling stability of 1303.1 mA h g-1 at 2 A g-1 with 84.5% capacity retention after 500 cycles, and a high rate capability of 907.6 mA h g-1 even at 4 A g-1.

12.
Bioresour Technol ; 243: 793-799, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28715696

ABSTRACT

An efficient approach involving surfactant treatment, or the modification and utilization of surfactants that naturally occur in algae (algal-based surfactants), was developed to assist in the extraction of lipids from wet algae. Surfactants were found to be able to completely replace polar organic solvents in the extraction process. The highest yield of algal lipids extracted by hexane and algal-based surfactants was 78.8%, followed by 78.2% for hexane and oligomeric surfactant extraction, whereas the lipid yield extracted by hexane and ethanol was only 60.5%. In addition, the saponifiable lipids extracted by exploiting algal-based surfactants and hexane, or adding oligomeric surfactant and hexane, accounted for 78.6% and 75.4% of total algal lipids, respectively, which was more than 10% higher than the lipids extracted by hexane and ethanol. This work presents a method to extract lipids from algae using only nonpolar organic solvents, while obtaining high lipid yields and high selectivity to saponifiables.


Subject(s)
Chlorophyta , Lipids , Surface-Active Agents , Biomass , Solvents
13.
ChemSusChem ; 10(2): 353-358, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28000383

ABSTRACT

Carbon nanotubes (CNTs) were used in oxidative dehydrogenation (ODH) reactions. Quinone groups on the CNT surface were identified as active sites for the dehydrogenation pathway. Liquid-phase oxidation with HNO3 is one way to generate various oxygen functionalities on the CNT surface but it produces a large amount of acid waste, limiting its industrial application. Here, a facile and efficient oxidative method to prepare highly selective CNT catalysts for ODH of n-butane is reported. Magnesium nitrate salts as precursors were used to produce defect-rich CNTs through solid-phase oxidation. Skeleton defects induced on the CNT surface resulted in the selective formation of quinone groups active for the selective dehydrogenation. The as-prepared catalyst exhibited a considerable selectivity (58 %) to C4 olefins, which is superior to that of CNTs oxidized with liquid HNO3 . Through the introduction of MgO nanoparticles on the CNT surface, the desorption of alkenes can be accelerated dramatically, thus enhancing the selectivity. This study provides an attractive way to develop new nanocarbon catalysts.


Subject(s)
Nanotubes, Carbon/chemistry , Butanes/chemistry , Catalysis , Hydrogenation , Nitric Acid/chemistry , Oxidation-Reduction , Surface Properties
14.
Bioresour Technol ; 223: 312-316, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27806886

ABSTRACT

An effective cell disruption method, including alkaline pretreatment and subsequent enzymatic treatment, was established to break cell walls and extract lipid from Nannochloropsis sp. A synergistic effect was found between alkaline pretreatment and enzymatic treatment. The combination of commercialize enzymes (cellulase, protease, lysozyme, and pectinase) achieved higher lipid yield compared with a single enzyme application. With the compromise between economic feasibility and lipid yield, the optimum reaction conditions were obtained with alkaline pretreatment at pH 10.5 at 110°C for 4h, and subsequent enzymatic treatment at pH 4 at 50°C for 30min with the dosage of each enzyme at 200IU/g. As high as 90.0% of lipid was extracted under optimal conditions from Nannochloropsis sp.


Subject(s)
Cell Wall/chemistry , Cell Wall/metabolism , Lipids/isolation & purification , Microalgae/enzymology , Microalgae/metabolism , Cellulase/metabolism , Chemical Fractionation/methods , Lipid Metabolism , Muramidase/metabolism , Polygalacturonase/metabolism , Water/chemistry
15.
Appl Environ Microbiol ; 83(3)2017 02 01.
Article in English | MEDLINE | ID: mdl-27864175

ABSTRACT

Nitrite, a common form of inorganic nitrogen (N), can be used as a nitrogen source through N assimilation. However, high levels of nitrite depress photosynthesis in various organisms. In this study, we investigated which components of the photosynthetic electron transfer chain are targeted by nitrite stress in Synechocystis sp. strain PCC 6803 cells. Measurements of whole-chain and photosystem II (PSII)-mediated electron transport activities revealed that high levels of nitrite primarily impair electron flow in PSII. Changes in PSII activity in response to nitrite stress occurred in two distinct phases. During the first phase, which occurred in the first 3 h of nitrite treatment, electron transfer from the primary quinone acceptor (QA) to the secondary quinone acceptor (QB) was retarded, as indicated by chlorophyll (Chl) a fluorescence induction, S-state distribution, and QA- reoxidation tests. In the second phase, which occurred after 6 h of nitrite exposure, the reaction center was inactivated and the donor side of photosystem II was inhibited, as revealed by changes in Chl fluorescence parameters and thermoluminescence and by immunoblot analysis. Our data suggest that nitrite stress is highly damaging to PSII and disrupts PSII activity by a stepwise mechanism in which the acceptor side is the initial target. IMPORTANCE In our previous studies, an alga-based technology was proposed to fix the large amounts of nitrite that are released from NOX-rich flue gases and proved to be a promising industrial strategy for flue gas NOX bioremediation (W. Chen et al., Environ Sci Technol 50:1620-1627, 2016, https://doi.org/10.1021/acs.est.5b04696; X. Zhang et al., Environ Sci Technol 48:10497-10504, 2014, https://doi.org/10.1021/es5013824). However, the toxic effects of high concentrations of nitrite on algal cells remain obscure. The analysis of growth rates, photochemistry, and protein profiles in our study provides important evidence that the inhibition by nitrite occurs in two phases: in the first phase, electron transfer between QA- and QB is retarded, whereas in the second, the donor side of PSII is affected. This is an excellent example of investigating the "early" inhibitory effects (i.e., within the first 6 h) on the PSII electron transfer chain in vivo This paper provides novel insights into the mechanisms of nitrite inhibition of photosynthesis in an oxygenic phototrophic cyanobacterium.


Subject(s)
Nitrites/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/physiology , Electron Transport , Stress, Physiological , Synechocystis/genetics
16.
Front Microbiol ; 7: 557, 2016.
Article in English | MEDLINE | ID: mdl-27148237

ABSTRACT

Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L(-1) d(-1) urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L(-1) d(-1) urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity.

17.
J Plant Physiol ; 195: 73-9, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27010349

ABSTRACT

Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal.


Subject(s)
Acclimatization/drug effects , Air Pollutants/metabolism , Chlorella/physiology , Nitrites/metabolism , Nitrogen Oxides/metabolism , Biodegradation, Environmental , Chlorella/drug effects , Chlorella/genetics , Chlorophyll/metabolism , Fluorescence , Gases/metabolism , Photosynthesis/drug effects , Species Specificity
18.
Appl Microbiol Biotechnol ; 100(5): 2073-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26754812

ABSTRACT

The excessive emission of flue gas contributes to air pollution, abnormal climate change, global warming, and sea level rises associated with glacial melting. With the ability to utilize NOx as a nitrogen source and to convert solar energy into chemical energy via CO2 fixation, microalgae can potentially reduce air pollution and relax global warming, while also enhancing biomass and biofuel production as well as the production of high-value-added products. This informatics-based review analyzes the trends in the related literature and in patent activity to draw conclusions and to offer a prospective view on the developments of microalgae for industrial flue gas biosequestration. It is revealed that in recent years, microalgal research for industrial flue gas biosequestration has started to attract increasing attention and has now developed into a hot research topic, although it is still at a relatively early stage, and needs more financial and policy support in order to better understand microalgae and to develop an economically viable process. In comparison with onsite microalgal CO2 capture, microalgae-based biological DeNOx appears to be a more realistic and attractive alternative that could be applied to NOx treatment.


Subject(s)
Air Pollutants/metabolism , Biotechnology/methods , Gases/metabolism , Industrial Waste , Microalgae/growth & development , Microalgae/metabolism , Biotechnology/trends , Patents as Topic , Publishing
19.
Environ Sci Technol ; 50(3): 1620-7, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26751001

ABSTRACT

Nitrogen oxides (NOx) are the components of fossil flue gas that result in the most serious environmental concerns. We previously showed that the biological removal of NOx by microalgae appears superior to traditional treatments. This study optimizes the strategy for the microalgal-based DeNOx of flue gas by fed-batch mixotrophic cultivation. By using actual flue gas fixed salts (FGFS) as the nitrogen supply, the mixotrophical cultivation of the green alga Chlorella sp. C2 with high NOx absorption efficiency was optimized in a stepwise manner in a 5 L bioreactor and resulted in a maximum biomass productivity of 9.87 g L(-1) d(-1). The optimized strategy was further scaled up to 50 L, and a biomass productivity of 7.93 g L(-1) d(-1) was achieved, with an overall DeNOx efficiency of 96%, along with an average nitrogen CR of 0.45 g L(-1) d(-1) and lipid productivity of 1.83 g L(-1) d(-1). With an optimized mixotrophical cultivation, this study further proved the feasibility of using Chlorella for the combination of efficient biological DeNOx of flue gas and microalgae-based products production. Thus, this study shows a promising industrial strategy for flue gas biotreatment in plants with limited land area.


Subject(s)
Air Pollution/prevention & control , Biomass , Chlorella/metabolism , Culture Techniques , Nitrogen Oxides/metabolism , Bioreactors , Chlorella/growth & development , Industry , Lipids , Microalgae/growth & development , Microalgae/metabolism , Nitrogen
20.
Sci Rep ; 5: 15117, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26450399

ABSTRACT

We previously showed that both the linear photosynthetic electron transportation rate and the respiration rate dropped significantly during N starvation-induced neutral lipid accumulation in an oil-producing microalga, Chlorella sorokiniana, and proposed a possible role for cyclic electron flow (CEF) in ATP supply. In this study, we further exploited this hypothesis in both Chlorella sorokiniana C3 and the model green alga Chlamydomonas. We found that both the rate of CEF around photosystem I and the activity of thylakoid membrane-located ATP synthetase increased significantly during N starvation to drive ATP production. Furthermore, we demonstrated that the Chlamydomonas mutant pgrl1, which is deficient in PGRL1-mediated CEF, accumulated less neutral lipids and had reduced rates of CEF under N starvation. Further analysis revealed that Ca(2+) signaling regulates N starvation-induced neutral lipid biosynthesis in Chlamydomonas by increasing calmodulin activity and boosting the expression of the calcium sensor protein that regulates Pgrl1-mediated CEF. Thus, Ca(2+)-regulated CEF supplies ATP for N starvation-induced lipid biosynthesis in green alga. The increased CEF may re-equilibrate the ATP/NADPH balance and recycle excess light energy in photosystems to prevent photooxidative damage, suggesting Ca(2+)-regulated CEF also played a key role in protecting and sustaining photosystems.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium/metabolism , Chlorophyta/metabolism , Lipids/biosynthesis , Nitrogen/metabolism , ATP Synthetase Complexes/metabolism , Algal Proteins/genetics , Algal Proteins/metabolism , Catalase/genetics , Catalase/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chlorella/classification , Chlorella/genetics , Chlorella/metabolism , Chlorophyta/genetics , Electron Transport/genetics , Electron Transport/physiology , Immunoblotting , Microscopy, Confocal , Mutation , Photosynthesis/genetics , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Thylakoids/enzymology , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...