Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 85(20): 9839-44, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24016136

ABSTRACT

In this paper, the development of a simple method is described for preparing highly red fluorescent mercaptosuccinic acid stabilized AgAu alloy nanoclusters (MSA-AgAu NCs) through the core etching of Ag nanoparticles (NPs) and a galvanic exchange reaction using nonorganic solvent and no multistep centrifuge washing. The as-prepared MSA-AgAu NCs were characterized using spectroscopic and microscopic techniques. After covalently attaching methoxy-poly(ethylene glycol)-NH2 (m-PEG-NH2), PEGylated MSA-AgAu NCs were still stable even in 1 M NaCl. Probably based on the deposition of Al(3+)-enhanced fluorescence, the PEGylated MSA-AgAu NCs offered highly selective and sensitive sensing of Al(3+) in aqueous solution with a detection limit of 0.8 µM.

2.
Anal Chim Acta ; 745: 33-7, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22938603

ABSTRACT

In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl(4)(2-) and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 µM to 2.28 mM with a correlation coefficient of R=0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.


Subject(s)
Ascorbic Acid/analysis , Electrochemical Techniques/instrumentation , Graphite/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Dopamine/analysis , Electrochemical Techniques/methods , Electrodes , Humans , Limit of Detection , Metal Nanoparticles/ultrastructure , Sensitivity and Specificity , Uric Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...