Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Acta Pharmacol Sin ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702501

ABSTRACT

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.

2.
J Chem Neuroanat ; 132: 102319, 2023 10.
Article in English | MEDLINE | ID: mdl-37495162

ABSTRACT

OBJECTIVE: This study aimed to confirm that G protein-coupled estrogen receptor 1 (GPER1) deficiency affects cognitive function by reducing hippocampal neurogenesis via the PKA/ERK/IGF-I signaling pathway in mice with schizophrenia (SZ). METHODS: Mice were divided into four groups, namely, KO Con, WT Con, KO Con, and WT SZ (n = 12 in each group). All mice were accustomed to the behavioral equipment overnight in the testing service room. The experimental conditions were consistent with those in the animal house. Forced swimming test and Y-maze test were conducted. Neuronal differentiation and maturation were detected using immunofluorescence and confocal imaging. The protein in the PKA/ERK/IGF-I signaling pathway was tested using Western blot analysis. RESULTS: GPER1 KO aggravated depression during forced swimming test and decreased cognitive ability during Y-maze test in the mouse model of dizocilpine maleate (MK-801)-induced SZ. Immunofluorescence and confocal imaging results demonstrated that GPER1 knockout reduced adult hippocampal dentate gyrus neurogenesis. Furthermore, GPER1-KO aggravated the hippocampal damage induced by MK-801 in mice through the PKA/ERK/IGF-I signaling pathway. CONCLUSIONS: GPER1 deficiency reduced adult hippocampal neurogenesis and neuron survival by regulating the PKA/ERK/IGF-I signaling pathway in the MK-801-induced mouse model of SZ.


Subject(s)
Estrogen Receptor alpha , Hippocampus , Neurogenesis , Schizophrenia , Animals , Mice , Dizocilpine Maleate/metabolism , Dizocilpine Maleate/pharmacology , Estrogen Receptor alpha/genetics , GTP-Binding Proteins/metabolism , Hippocampus/metabolism , Insulin-Like Growth Factor I/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/genetics , Schizophrenia/genetics
3.
Sheng Li Xue Bao ; 72(3): 285-298, 2020 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-32572427

ABSTRACT

The current study was aimed to investigate the potential effects of perinatal exposure to therapeutic dose of penicillin and cefixime on the cognitive behaviors, gastrointestinal (GI) motility and serum 5-hydroxytryptamine (5-HT) level in the offspring. Pregnant rats were continuously treated with cefixime or penicillin in the period between 1 week before and 1 week after labor. Behavior tests, including social preference, self-grooming and elevated plus maze tests, and intestinal motility tests were carried out on the offspring at age of 4 to 10 weeks. Serum 5-HT levels were detected with ELISA, and potassium/sodium hyperpolarization activated cyclic nucleotide-gated channel 2 (HCN2) and tryptophan hydroxylase 1 (TPH1) expression levels in colon epithelium of offspring were detected by Western blot and RT-qPCR. The results showed that, compared with the naive group, cefixime increased social behavior in the female offspring, but did not affect the male offspring. Compared with the naive group, cefixime significantly decreased colonic and intestinal transits, and increased cecum net weight and standardized cecum net weight in the male offspring, but did not affect the female offspring. The serum 5-HT levels in the male offspring, rather than the female offspring, in cefixime and penicillin groups were significantly increased compared with that in the naive group. The protein expression level of HCN2 in colon epithelium of the offspring in cefixime group was significantly down-regulated, and the TPH1 expression level was not significantly changed, compared with that in the naive group. These results suggest that perinatal antibiotics exposure may affect neural development and GI functions of the offspring, and the mechanism may involve peripheral 5-HT and gender-dependent factor.


Subject(s)
Serotonin , Tryptophan Hydroxylase , Animals , Anti-Bacterial Agents/pharmacology , Colon , Female , Gastrointestinal Motility , Male , Mice , Pregnancy , Rats
4.
Sheng Li Xue Bao ; 72(3): 347-360, 2020 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-32572432

ABSTRACT

Interactions among the nervous, the endocrine and the immune systems enable the gut to respond to the dietary products, pathogens and microbiota, which maintains the homeostasis of the body. However, dysbiosis may induce or aggravate the gastrointestinal (GI) and extra-GI diseases through changing the activities of enteric nervous system (ENS), enteroendocrine cells and enteric immune cells. Here we review recent advances in the understandings on how intestinal flora may impact the enteric neuro-endocrine-immune system in the gut, thereby contributing to the regulation of pathophysiological processes.


Subject(s)
Enteric Nervous System , Gastrointestinal Diseases , Gastrointestinal Microbiome , Humans , Immune System
5.
Sheng Li Xue Bao ; 69(5): 532-540, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29063102

ABSTRACT

Numerous studies have demonstrated that estrogens may exert multifaceted effects on the cardiovascular system via activating the classical nuclear receptors ERα or ERß and the novel G protein coupled estrogen receptor (Gper). However, some studies have reported inconsistent cardiovascular phenotypes in Gper-deficient mice. The current study was aimed to reveal the effects of genetic deletion of Gper on the arterial blood pressure (ABP) and heart rate in rats. Gper-deficient Sprague-Dawley rats were generated by utilizing the CRISPR-Cas9 gene-editing technique. ABP of 10-week old male (n = 6) and 12-week old female (n = 6) Gper-deficient rats and age-matched wild type (WT) rats (6 females and 6 males) were measured under awake and restrained conditions through the non-invasive tail-cuff method daily for 8 (females) or 9 days (males). In the male WT rats, ABP and heart rate were slightly higher in day 1 to 4 than those in day 5 to 9, indicative of stress-related sympathoexcitation in the first few days and gradual adaptation to the restrained stress in later days. Gper-deficient rats had significantly higher ABP initially (male: day 1 to day 5; female: day 1 to day 3) and similar ABP in later days of measurement compared with the WT rats. The heart rate of male Gper-deficient rats was consistently higher than that of the male WT rats from day 1 to day 8. Both male and female Gper-deficient rats appeared to show slower body weight gain than the WT counterparts during the study period. Under anesthesia, ABP of Gper-deficient rats was not significantly different from their WT counterparts. These results indicate that Gper-deficient rats may be more sensitive to stress-induced sympathoexcitation and highlight the importance of Gper in the regulation of the cardiovascular function in stressful conditions.


Subject(s)
Hypertension/etiology , Receptors, Estrogen/physiology , Receptors, G-Protein-Coupled/physiology , Stress, Psychological/complications , Animals , Female , Male , Rats , Rats, Sprague-Dawley
6.
CNS Neurosci Ther ; 23(12): 980-989, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29047208

ABSTRACT

AIMS: Estrogens are known to exert a wide spectrum of actions on brain functions including modulation of pain. Besides the circulating estrogens produced mainly by the ovaries, many brain regions are also capable of de novo synthesizing estrogens, which may exert important modulatory effects on neuronal functions. This study was aimed to test the hypothesis that aromatase, the enzyme that catalyzes the conversion of testosterone to estradiols, may be distributed in the rostral ventromedial medulla (RVM), where it may impact on visceral pain. METHODS AND RESULTS: Adult female rats were treated with cyclophosphamide (CPM, 50 mg/kg, ip, once every 3 days) or saline. At approximately day 10 following the 3rd injection, CPM-treated rats exhibited colorectal hyperalgesia as they showed significantly greater abdominal withdrawal responses (AWR) to graded colorectal distension (CRD, 0-100 mm Hg) than the saline group. Immunofluorescent staining and Western blot assay revealed that CPM-induced colorectal hyperalgesia was associated with significantly increased expression of aromatase and phosphorylated µ-type opioid receptor (pMOR) and decreased expression of total MOR in the RVM. Intracisternal application of aromatase inhibitors, fadrozole, and letrozole reversed CPM-induced colorectal hyperalgesia and restored pMOR and MOR expression in the RVM. CONCLUSIONS: Our observations confirmed the expression of aromatase in the RVM, a pivotal brain region in descending modulation of pain and opioid analgesia. The results support the hypothesis that locally produced estrogens in the RVM may be involved in the maintenance of chronic visceral hyperalgesia and the downstream signaling may involve phosphorylation of MOR.


Subject(s)
Aromatase/metabolism , Medulla Oblongata/metabolism , Visceral Pain/metabolism , Visceral Pain/pathology , Animals , Antirheumatic Agents/toxicity , Cyclophosphamide/toxicity , Disease Models, Animal , Female , Hyperalgesia/metabolism , Pain Threshold , Rats , Visceral Pain/chemically induced
7.
Sheng Li Xue Bao ; 66(4): 431-7, 2014 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-25131784

ABSTRACT

The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 µL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.


Subject(s)
Ganglia, Spinal/metabolism , Pain/metabolism , Receptors, Purinergic P2X3/metabolism , Animals , Female , Mice , Mice, Knockout , Pain Threshold , Proto-Oncogene Proteins c-fos/metabolism , Spinal Cord/metabolism , TRPV Cation Channels/genetics , Up-Regulation
8.
World J Gastroenterol ; 20(2): 498-508, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24574718

ABSTRACT

AIM: To generate a Gpr128 gene knockout mouse model and to investigate its phenotypes and the biological function of the Gpr128 gene. METHODS: Bacterial artificial chromosome-retrieval methods were used for constructing the targeting vector. Using homologous recombination and microinjection technology, a Gpr128 knockout mouse model on a mixed 129/BL6 background was generated. The mice were genotyped by polymerase chain reaction (PCR) analysis of tail DNA and fed a standard laboratory chow diet. Animals of both sexes were used, and the phenotypes were assessed by histological, biochemical, molecular and physiological analyses. Semi-quantitative reverse transcription-PCR and Northern blotting were used to determine the tissue distribution of Gpr128 mRNA. Beginning at the age of 4 wk, body weights were recorded every 4 wk. Food, feces, blood and organ samples were collected to analyze food consumption, fecal quantity, organ weight and constituents of the blood and plasma. A Trendelenburg preparation was utilized to examine intestinal motility in wild-type (WT) and Gpr128(-/-) mice at the age of 8 and 32 wk. RESULTS: Gpr128 mRNA was highly and exclusively detected in the intestinal tissues. Targeted deletion of Gpr128 in adult mice resulted in reduced body weight gain, and mutant mice exhibited an increased frequency of peristaltic contraction and slow wave potential of the small intestine. The Gpr128(+/+) mice gained more weight on average than the Gpr128(-/-) mice since 24 wk, being 30.81 ± 2.84 g and 25.74 ± 4.50 g, respectively (n = 10, P < 0.01). The frequency of small intestinal peristaltic contraction was increased in Gpr128(-/-) mice. At the age of 8 wk, the frequency of peristalsis with an intraluminal pressure of 3 cmH2O was 6.6 ± 2.3 peristalsis/15 min in Gpr128(-/-) intestine (n = 5) vs 2.6 ± 1.7 peristalsis/15 min in WT intestine (n = 5, P < 0.05). At the age of 32 wk, the frequency of peristaltic contraction with an intraluminal pressure of 2 and 3 cmH2O was 4.6 ± 2.3 and 3.1 ± 0.8 peristalsis/15 min in WT mice (n = 8), whereas in Gpr128(-/-) mice (n = 8) the frequency of contraction was 8.3 ± 3.0 and 7.4 ± 3.1 peristalsis/15 min, respectively (2 cmH2O: P < 0.05 vs WT; 3 cmH2O: P < 0.01 vs WT). The frequency of slow wave potential in Gpr128(-/-) intestine (35.8 ± 4.3, 36.4 ± 4.2 and 37.1 ± 4.8/min with an intraluminal pressure of 1, 2 and 3 cmH2O, n = 8) was also higher than in WT intestine (30.6 ± 4.2, 31.4 ± 3.9 and 31.9 ± 4.5/min, n = 8, P < 0.05). CONCLUSION: We have generated a mouse model with a targeted deletion of Gpr128 and found reduced body weight and increased intestinal contraction frequency in this animal model.


Subject(s)
Gene Deletion , Jejunum/metabolism , Muscle Contraction/genetics , Peristalsis/genetics , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Weight Loss/genetics , Age Factors , Animals , Female , Gene Expression Regulation , Genotype , Jejunum/physiopathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pressure , RNA, Messenger/metabolism
9.
World J Gastroenterol ; 18(6): 522-31, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22363118

ABSTRACT

AIM: To assess the role of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels in regulating the excitability of vagal and spinal gut afferents. METHODS: The mechanosensory response of mesenteric afferent activity was measured in an ex vivo murine jejunum preparation. HCN channel activity was recorded through voltage and current clamp in acutely dissociated dorsal root ganglia (DRG) and nodose ganglia (NG) neurons retrogradely labeled from the small intestine through injection of a fluorescent marker (DiI). The isoforms of HCN channels expressed in DRG and NG neurons were examined by immunohistochemistry. RESULTS: Ramp distension of the small intestine evoked biphasic increases in the afferent nerve activity, reflecting the activation of low- and high-threshold fibers. HCN blocker CsCl (5 mmol/L) preferentially inhibited the responses of low-threshold fibers to distension and showed no significant effects on the high-threshold responses. The effect of CsCl was mimicked by the more selective HCN blocker ZD7288 (10 µmol/L). In 71.4% of DiI labeled DRG neurons (n = 20) and 90.9% of DiI labeled NG neurons (n = 10), an inward current (I(h) current) was evoked by hyperpolarization pulses which was fully eliminated by extracellular CsCl. In neurons expressing I(h) current, a typical "sag" was observed upon injection of hyperpolarizing current pulses in current-clamp recordings. CsCl abolished the sag entirely. In some DiI labeled DRG neurons, the I(h) current was potentiated by 8-Br-cAMP, which had no effect on the I(h) current of DiI labeled NG neurons. Immunohistochemistry revealed differential expression of HCN isoforms in vagal and spinal afferents, and HCN(2) and HCN(3) seemed to be the dominant isoform in DRG and NG, respectively. CONCLUSION: HCNs differentially regulate the excitability of vagal and spinal afferent of murine small intestine.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/metabolism , Intestine, Small/innervation , Neurons, Afferent/metabolism , Protein Isoforms/metabolism , 8-Bromo Cyclic Adenosine Monophosphate/metabolism , Action Potentials/physiology , Animals , Cells, Cultured , Cyclic Nucleotide-Gated Cation Channels/antagonists & inhibitors , Ganglia, Spinal/cytology , Male , Mechanoreceptors/cytology , Mechanoreceptors/metabolism , Membrane Potentials/physiology , Mice , Neurons, Afferent/cytology , Nodose Ganglion/cytology , Patch-Clamp Techniques , Pressure
10.
J Ethnopharmacol ; 139(3): 746-50, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22197825

ABSTRACT

AIM OF THE STUDY: This work aims to investigate the effects of HSYA on cardiac function and blood pressure. MATERIALS AND METHODS: To evaluate changes in mean arterial pressure (MAP) and heart rate (HR), different groups of pentobarbitone-anesthetized normotensive and spontaneously hypertensive rats (SHR) were treated with intravenous HSYA (0.1-3 mg/kg). Isolated WKY rat hearts in Langendorff system were employed for examining the effect of HSYA on hemodynamic. After 30 min equilibration time the isolated hearts were perfused with HSYA (30 µmol/L) in a stepwise fashion. Potassium channel inhibitors were used to determine the role of potassium channel activation in HSYA effect. RESULTS: Intravenous injection of the HSYA significantly reduced MAP and HR in both normotensive rats and SHR in a dose-dependent manner. HSYA reduced left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), the maximum rate of increase of left ventricular pressure (+dp/dt(max)) and heart rate (HR) in a dose-dependent manner. HSYA had no remarkable effect on the maximum rate of decrease of left ventricular pressure (-dp/dt(max)); BK(Ca) and K(ATP) blocker can weakened the inhibitory effect of HSYA on heart function and HR, but K(V) and K(ACh) blocker did not significantly weaken the HSYA effects. CONCLUSION: Our results show that HSYA could significantly reduce blood pressure and heart rate, which may be related to activation of BK(Ca) and K(ATP) channels.


Subject(s)
Blood Pressure/drug effects , Carthamus tinctorius , Chalcone/analogs & derivatives , Hypertension/drug therapy , Plant Extracts/therapeutic use , Quinones/therapeutic use , Ventricular Function, Left/drug effects , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channels , Chalcone/pharmacology , Chalcone/therapeutic use , Dose-Response Relationship, Drug , Flowers , Heart Rate/drug effects , Plant Extracts/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Potassium Channels/drug effects , Quinones/pharmacology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Reference Values
11.
Fundam Clin Pharmacol ; 26(1): 118-34, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22044554

ABSTRACT

Chronic obstructive pulmonary disease (COPD) has become a global epidemic disease with an increased morbidity and mortality in the world. Inflammatory process progresses and contributes to irreversible airflow limitation. However, there is no available therapy to better control the inflammatory progression and therefore to reduce the exacerbations and mortality. Thus, the development of efficient anti-inflammatory therapies is a priority for patients with COPD. ß(2) -Adrenoceptor agonists and anticholinergic agents are widely used as first line drugs in management of COPD because of their efficient bronchodilator properties. At present, many studies in vitro and some data obtained in laboratory animals reveal the potential anti-inflammatory effects of these bronchodilators but their protective role against chronic inflammation and the development of emphysema in patients with COPD remains to be investigated. The anti-inflammatory effects of theophylline at low doses have also been identified. Beneficial interactions between glucocorticoids and bronchodilators have been reported, and signaling pathways explaining these synergistic effects begin to be understood, especially for theophylline. Recent data demonstrating interactions between anticholinergics with ß(2) -adrenoceptor agonists aiming to better control the pulmonary inflammation and the development of emphysema in animal models of COPD justify the priority to investigate the interactive effects of a tritherapy associating corticoids with the two main categories of bronchodilators.


Subject(s)
Bronchodilator Agents/therapeutic use , Inflammation/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , Adrenergic beta-2 Receptor Agonists/administration & dosage , Adrenergic beta-2 Receptor Agonists/pharmacology , Adrenergic beta-2 Receptor Agonists/therapeutic use , Animals , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacology , Cholinergic Antagonists/administration & dosage , Cholinergic Antagonists/pharmacology , Cholinergic Antagonists/therapeutic use , Disease Progression , Drug Synergism , Emphysema/drug therapy , Emphysema/etiology , Humans , Inflammation/etiology , Inflammation/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Theophylline/administration & dosage , Theophylline/pharmacology , Theophylline/therapeutic use
12.
Life Sci ; 81(13): 1042-9, 2007 Sep 08.
Article in English | MEDLINE | ID: mdl-17854840

ABSTRACT

Hypoxic preconditioning (HPC) has been well demonstrated to have potent protective effects in many cell types; however, the mechanisms responsible for this phenomenon are not fully understood. Recently, glucose-regulated protein 78 (GRP78), an inducible molecular chaperon, was indicated to be associated with ischemic preconditioning. We hypothesized that HPC protects cardiomyocytes against hypoxia by inducing GRP78 in cultured neonatal rat cardiomyocytes. HPC was induced by exposing cardiomyocytes to brief hypoxia (1% O(2), 30 min) followed by reoxygenation. GRP78 was expressed constitutively in cultured cardiomyocytes and its expression was enhanced at 12 h, peaked at 24 h (207.3+/-23.6% of the baseline), and was sustained for up to 72 h after HPC. Twenty-four hours after HPC, the myocytes were subjected to prolonged hypoxia (1% O(2), 12 h). The lactic dehydrogenase (LDH) release and malondialdehyde (MDA) content were reduced, while cell viability and superoxide dismutase (SOD) activity were increased in the preconditioned cells compared with the non-HPC cells. The GRP78 protein level was higher in cells exposed to both HPC and hypoxia than in the cells exposed to HPC alone or hypoxia alone. Heat shock protein 70 (HSP70) was induced in parallel by late HPC. Transfection of GRP78 antisense oligonucleotides blocked GRP78 expression but not HSP70, resulting in attenuated cardioprotection afforded by late HPC. Furthermore, inducing GRP78 by gene transfer protected cardiomyocytes from hypoxic injury. These findings demonstrate that the induction of GRP78 partially mediates the late HPC, suggesting that GRP78 is a novel mechanism responsible for the late cytoprotection of HPC.


Subject(s)
Cytoprotection , Heat-Shock Proteins/biosynthesis , Ischemic Preconditioning, Myocardial , Molecular Chaperones/biosynthesis , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Cell Hypoxia/drug effects , Cells, Cultured , Cytoprotection/drug effects , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Malondialdehyde/metabolism , Molecular Chaperones/antagonists & inhibitors , Myocytes, Cardiac/pathology , Oligodeoxyribonucleotides, Antisense/pharmacology , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Time Factors
13.
Article in Chinese | MEDLINE | ID: mdl-21179828

ABSTRACT

AIM: To investigate the roles of acetylcholine (ACh) receptors in the rapid effects of corticosterone (CORT) on the presympathetic neurons in the rostral ventrolateral medulla (RVLM) of rats, and study the non-genomic mechanism of glucocorticoid (GC) in the integration of sympathetic cardiovascular activity. METHODS: The effects of microelectrophoresis of CORT on the discharge of the presympathetic neurons in the RVLM were observed by extracellular recording in urethane-anaesthetized rats. The responses of atropine (a blocker for M type of ACh receptor, ATR), d-tubocurarine (a blocker for N1 type of ACh receptor, d-TC) and hexamethonium (a blocker for N2 type of ACh receptor, C6) to the effects of CORT on the presympathetic neurons were investigated respectively. RESULTS: Totally 33 presympathetic neurons in the RVLM were recorded. Among them the firing rate of 25 (76%) presympathetic neurons was increased by microelectrophoresis of CORT. The effects of CORT were also positively correlated with the currents. In the other 8 presympathetic neurons, had was shown no effect after microelectrophoresis of CORT. In 10 presympathetic neurons, which discharge was increased by CORT, microelectrophoresis of ATR decreased the firing rate of these presympathetic neurons (P < 0.05), and did not fully block the excitatory effect induced by CORT. In both 7 and 6 presympathetic neurons, application of d-TC and C6 had no effect on these neurons respectively, and did not fully block the excitatory effect induced by CORT. CONCLUSION: CORT had rapid excitatory effects on the presympathetic neurons in the RVLM, which effect might be independent on ACh receptors.


Subject(s)
Corticosterone/pharmacology , Medulla Oblongata/physiology , Neurons/drug effects , Receptors, Cholinergic/physiology , Animals , Cholinergic Antagonists/pharmacology , Electrophoresis, Microchip , Male , Medulla Oblongata/drug effects , Neuromuscular Nondepolarizing Agents/pharmacology , Neurons/physiology , Nicotinic Antagonists/pharmacology , Rats , Rats, Sprague-Dawley
14.
Article in Chinese | MEDLINE | ID: mdl-21179830

ABSTRACT

AIM: Study on the relationship between the degraded spinal cord injuries and the changes of the motor evoked potentials (MEP) to prove the diagnosis and prognosis value of MEP. METHODS: After injury at T8-T9 cord using modified Allen's weight-drop method, 27 male SD rats were divided randomly into control group (n = 5), group A (50 gcf, n = 8), group B (70 gcf, n = 8) and group C (100 gcf, n = 6). MEPs elicited by monopolar transcortical stimulation were recorded continuously before injury, just after injury, 15 minutes, 1 hour, 3 hours and 6 hours after injury. The rate of the size of the bleeding or necrosis area to the total cord was also calculated. RESULTS: MEP had no significant change in the control group. The amplitude of MEP's early components in group A or group B decreased or even obliterated after SCI, and then partially recovered, while the late components were lost without any recovery signals. All animals in group C showed no MEP waves excepting 2 rats had recovery signals. The size of the cord injuries area increased according to the dropping force and was correlated significantly with the amplitude of the largest peaks of scMEP 1 hour after SCI (r = -0.821). CONCLUSION: The scMEP changes after SCI are correlated with the injury forces and the pathological changes in the cord, which indicates that scMEP can be used as an objective index for the cord functional monitoring.


Subject(s)
Evoked Potentials, Motor/physiology , Spinal Cord Injuries/physiopathology , Animals , Electric Stimulation , Male , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...