Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Immunol ; 13: 853954, 2022.
Article in English | MEDLINE | ID: mdl-35371085

ABSTRACT

Enterococcus faecium (E. faecium) is a protective role that has crucial beneficial functions on intestinal homeostasis. This study aimed to investigate the effects of E. faecium on the laying performance, egg quality, host metabolism, intestinal mucosal immunity, and gut microbiota of laying hens under the Salmonella Enteritidis (S. Enteritidis) challenge. A total of 400 45-week-old laying hens were randomly divided into four treatments (CON, EF, SCON, and SEF groups) with five replicates for each group and 20 hens per replicate and fed with a basal diet or a basal diet supplemented with E. faecium (2.5 × 108 cfu/g feed). The experiment comprised two phases, consisting of the pre-salmonella challenged phase (from day 14 to day 21) and the post-salmonella challenged phase (from day 21 to day 42). At day 21 and day 22, the hens in SCON and SEF groups were orally challenged with 1.0 ml suspension of 109 cfu/ml S. Enteritidis (CVCC3377) daily, whereas the hens in CON and EF groups received the same volume of sterile PBS. Herein, our results showed that E. faecium administration significantly improved egg production and shell thickness during salmonella infection. Also, E. faecium affected host lipid metabolism parameters via downregulating the concentration of serum triglycerides, inhibited oxidative stress, and enhanced immune functions by downregulating the level of serum malondialdehyde and upregulating the level of serum immunoglobulin G. Of note, E. faecium supplementation dramatically alleviated intestinal villi structure injury and crypt atrophy, and improved intestinal mucosal barrier injuries caused by S. Enteritidis challenge. Moreover, our data revealed that E. faecium supplementation ameliorated S. Enteritidis infection-induced gut microbial dysbiosis by altering the gut microbial composition (reducing Bacteroides, Desulfovibrio, Synergistes, and Sutterella, and increasing Barnesiella, Butyricimonas, Bilophila, and Candidatus_Soleaferrea), and modulating the gut microbial function, such as cysteine and methionine metabolism, pyruvate metabolism, fatty acid metabolism, tryptophan metabolism, salmonella infection, and the PI3K-Akt signaling pathway. Taken together, E. faecium has a strong capacity to inhibit the S. Enteritidis colonization of hens. The results highlight the potential of E. faecium supplementation as a dietary supplement to combat S. Enteritidis infection in animal production and to promote food safety.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Animals , Chickens , Female , Immunity, Mucosal , Phosphatidylinositol 3-Kinases , Salmonella enteritidis
2.
Toxins (Basel) ; 13(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34941719

ABSTRACT

This study was conducted to compare the potential ameliorative effects between probiotic Bacillus subtilis and biodegradable Bacillus subtilis on zearalenone (ZEN) toxicosis in gilts. Thirty-six Landrace×Yorkshire gilts (average BW = 64 kg) were randomly divided into four groups: (1) Normal control diet group (NC) fed the basal diet containing few ZEN (17.5 µg/kg); (2) ZEN contaminated group (ZC) fed the contaminated diet containing an exceeded limit dose of ZEN (about 300 µg/kg); (3) Probiotic agent group (PB) fed the ZC diet with added 5 × 109 CFU/kg of probiotic Bacillus subtilis ANSB010; (4) Biodegradable agent group (DA) fed the ZC diet with added 5 × 109 CFU/kg of biodegradable Bacillus subtilis ANSB01G. Results showed that Bacillus subtilis ANSB010 and ANSB01G isolated from broiler intestinal chyme had similar inhibitory activities against common pathogenic bacteria. In addition, the feed conversion ratio and the vulva size in DA group were significantly lower than ZC group (p < 0.05). The levels of IgG, IgM, IL-2 and TNFα in the ZC group were significantly higher than PB and DA groups (p < 0.05). The levels of estradiol and prolactin in the ZC group was significantly higher than those of the NC and DA groups (p < 0.05). Additionally, the residual ZEN in the feces of the ZC and PB groups were higher than those of the NC and DA groups (p < 0.05). In summary, the ZEN-contaminated diet had a damaging impact on growth performance, plasma immune function and hormone secretion of gilts. Although probiotic and biodegradable Bacillus subtilis have similar antimicrobial capacities, only biodegradable Bacillus subtilis could eliminate these negative effects through its biodegradable property to ZEN.


Subject(s)
Animal Feed/toxicity , Bacillus subtilis , Bacterial Toxins/pharmacology , Bacterial Toxins/therapeutic use , Probiotics/therapeutic use , Protective Agents/therapeutic use , Zearalenone/toxicity , Animals , Female , Probiotics/pharmacology , Swine
3.
Anim Nutr ; 6(1): 39-46, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211527

ABSTRACT

This study was conducted to evaluate the effects of sporoderm-broken spores of Ganoderma lucidum (SSGL), a traditional Chinese medicinal herb, on growth performance, antioxidant ability, and immunity of broilers. Three hundred male broilers with similar body weights (40.0 ± 1.0 g) at 1 d of age were assigned randomly to 4 treatments. Each treatment contained 5 replicates of 15 birds per replicate. The dietary treatments were corn-soybean meal basal diet supplemented with SSGL at the concentrations of 0 (control), 100, 200 and 500 mg/kg diet. The results showed that diets supplemented with SSGL significantly increased (P < 0.05) the average daily gain and decreased (P < 0.05) the feed:gain (F:G) ratio of birds during the finisher period (22 to 44 d of age). Moreover, the total antioxidant capability, glutathione reductase and catalase activities in the liver and spleen were significantly higher (P < 0.05) in broilers fed diets with SSGL than in broilers fed the control diet. Additionally, dietary SSGL also increased (P < 0.05) the serum interleukin (IL)-2, immunoglobulin (Ig) A and IgG levels of broilers compared with the control diet. These results suggest that SSGL have ameliorative effects on growth performance, free radical-scavenging activity, antioxidant capability, and immune function of broilers.

4.
Plant Physiol Biochem ; 146: 133-142, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31751913

ABSTRACT

Avena sativa L. is the most important cultivated oat species worldwide. Although photoperiod-insensitive oat varieties exist, the molecular mechanisms underlying their photoperiod sensitivity are poorly understood. This study investigated the effects of day length on the fioral transition of oats and the mechanisms underlying oat photoperiod insensitivity. Photoperiod-sensitive and photoperiod-insensitive varieties, including gp012, were used in shading experiments, and the developing leaves and main shoot apices (MSAs) of the HONGQI2 and gp012 varieties were used for sequencing. Leaves and MSAs were collected in 2016, and their transcriptomes were sequenced. The photoperiod-insensitive varieties headed under both short-day and long-day conditions, while the photoperiod-sensitive varieties headed only under long-day conditions. A total of 60673 transcript sequences were obtained, 7932 of which were differentially expressed; 3194 and 4738 transcripts were differentially expressed in the leaves and MSAs, respectively. A total of 25793 transcripts were classified into 123 pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The carbon metabolism pathways were dominant, followed by ribosome and protein processing in the endoplasmic reticulum. In addition, 203 transcripts were classified into the circadian rhythm pathway. Compared with the expression of pseudo-response regulator protein 37 (PRR37) in photoperiod-sensitive varieties, that in photoperiod-insensitive varieties was upregulated. Among the differentially expressed transcripts (DETs), 8 MADS-box genes were identified. PRR37 is a key regulator of oat photoperiod insensitivity. The obtained transcriptome dataset may provide a reference for analyzing oat transcript expression, and the results should be used as a reference for oat breeding and production.


Subject(s)
Avena , Transcriptome , Gene Expression Regulation, Plant , Photoperiod , Plant Leaves
5.
Biosci Rep ; 39(6)2019 06 28.
Article in English | MEDLINE | ID: mdl-31142626

ABSTRACT

A number of investigations have addressed the importance of high glucose in breast cancer, however, the involvement of angiotensinogen (AGT) in this scenario is yet to be defined. Here we set out to analyze the potential pro-tumor effects of high glucose in breast cancer, and understand the underlying molecular mechanism. We demonstrated that high glucose promoted cell proliferation, viability, and anchorage-independent growth of breast cancer cells. In addition, the migrative and invasive capacities were significantly enhanced by high glucose medium. Mechanistically, AGT expression was inhibited by high glucose at both transcriptional and translational levels. High AGT remarkably suppressed proliferation, inhibited viability, and compromised migration/invasion of breast cancer cells. Most importantly, ectopic introduction of AGT almost completely abrogated pro-tumor effects of high glucose. Our study has characterized the pro-tumor properties of high glucose in breast cancer cells, which is predominantly attributed to the suppression of AGT.


Subject(s)
Angiotensinogen/biosynthesis , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glucose/pharmacology , Neoplasm Proteins/biosynthesis , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Neoplasm Metastasis
6.
Article in English | MEDLINE | ID: mdl-29796255

ABSTRACT

BACKGROUND: The current study was carried out to evaluate the effects of mycotoxin biodegradation agent (MBA, composed of Bacillus subtilis ANSB01G and Devosia sp. ANSB714) on relieving zearalenone (ZEA) and deoxynivalenol (DON) toxicosis in immature gilts. METHODS: A total of forty pre-pubertal female gilts (61.42 ± 1.18 kg) were randomly allocated to four diet treatments: CO (positive control); MO (negative control, ZEA 596.86 µg/kg feed and DON 796 µg/kg feed); COA (CO + 2 g MBA/kg feed); MOA (MO + 2 g MBA/kg feed). Each treatment contained 10 replicates with 1 gilt per replicate. Gilts were housed in an environmentally controlled room with the partially slatted floor. RESULTS: During the entire experimental period of 28 d, average daily gain (ADG) and average daily feed intake (ADFI) of gilts in MO group was significantly reduced compared with those in CO group. The vulva size of gilts was significantly higher in MO group than CO group. In addition, significant increases in the plasma levels of IgA, IgG, IL-8, IL-10 and PRL were determined in MO group compared with that in CO group. ZEA and DON in the diet up-regulated apoptotic caspase-3 in ovaries and uteri, along with down-regulated the anti-apoptotic protein Bcl-2 in ovaries. The supplementation of MBA into diets co-contaminated with ZEA and DON significantly increased ADG, decreased the vulva sizes, reduced the levels of IgG, IL-8 and PRL in plasma, and regulated apoptosis in ovaries and uteri of gilts. CONCLUSIONS: The present results indicated that feeding diet contaminated with ZEA and DON simultaneously (596.86 µg/kg + 796 µg/kg) had detrimental effects on growth performance, plasma immune function and reproductive status of gilts. And MBA could reduce the negative impacts of these two toxins, believed as a promising feed additive for mitigating toxicosis of ZEA and DON at low levels in gilts.

7.
Food Chem Toxicol ; 92: 143-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27016490

ABSTRACT

This study was conducted to investigate the toxic effects of deoxynivalenol (DON) and the ameliorating efficacy of Devosia sp. ANSB714 for the negative effects of DON on mice. In the experiment, 80 mice were randomly divided into 4 treatments: non-toxin control, toxin, non-toxin control + ANSB714 and toxin + ANSB714. During 28 days, the mice in treatment with 4.70 mg/kg DON only had significantly lower average daily gain as compared those with non-toxin control treatment (P < 0.05). Serum blood urea nitrogen, tumour necrosis factor-α and the residues of DON in kidneys in mice received the toxin diet were obviously higher than those with non-toxin control (P < 0.05). There were no significant differences (P > 0.05) between ANSB714 treatments and non-ANSB714 treatments on above parameters of mice. Adding ANSB714 to toxic diets could normalize deviant physiological effects of DON on mice.


Subject(s)
Food Contamination/prevention & control , Fusarium/physiology , Immune System/drug effects , Kidney/growth & development , Kidney/immunology , Toxicity Tests, Subacute/methods , Trichothecenes/toxicity , Animal Feed , Animals , Blood Chemical Analysis , Diet , Food Contamination/analysis , Kidney/drug effects , Male , Mice , Mice, Inbred BALB C , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...