Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.842
Filter
1.
J Pharm Biomed Anal ; 249: 116345, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986348

ABSTRACT

Ophiocordyceps xuefengensis (O. xuefengensis), the sister taxon of Ophiocordyceps sinensis (O. sinensis), is consumed as a "tonic food" due to its health benefits. However, little is known regarding the chemistry and bioactivity of O. xuefengensis. In this study, we characterized 80 indole-based alkaloids in the ethyl acetate fraction of O. xuefengensis by high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS), of which 54 indole-based alkaloids were identified as possibly new compounds. Furthermore, 29 of these compounds were established as potential anti-cancer compounds by ligand fishing combined with HPLC-Q-TOF-MS/MS. Moreover, molecular docking identified the NH- and OH- groups of these compounds as the key active groups. The present study has expanded the knowledge on the characteristic indole-based alkaloids and anti-cancer activity of O. xuefengensis.

2.
Front Public Health ; 12: 1407496, 2024.
Article in English | MEDLINE | ID: mdl-38957206

ABSTRACT

The study aimed to understand the main skills of older adult caregivers and find ways to improve these skills. We selected participants using a method called random cluster sampling, where caregivers from 17 different medical and nursing care facilities across seven districts in Hangzhou were chosen. We collected 492 valid questionnaires and conducted interviews with 150 people. To analyze the data, we used T-tests and Analysis of Variance (ANOVA) to identify what factors affect caregivers' skills. We also performed multiple regression analysis to explore these factors in more depth. The analysis showed that age (p = 0.041), annual income (p < 0.001), and having a training certificate (p < 0.001) significantly influence the skills of older adult caregivers. Specifically, caregivers' age and whether they had a training certificate were linked to how competent they were, with income being a very strong factor. The study highlighted a gap between the caregivers' current skills and the skills needed for high-quality care. This gap shows the need for training programs that are specifically tailored to the caregivers' diverse needs and cultural backgrounds. Medical and eldercare facilities should adjust their work and educational programs accordingly. It's also important to look at how caregivers are paid to make sure their salary reflects their skills and the quality of care they provide. Finally, it's crucial to integrate a comprehensive training program that leads to certification within eldercare organizations.


Subject(s)
Caregivers , Humans , Caregivers/education , Male , Female , Aged , Middle Aged , China , Surveys and Questionnaires , Adult , Aged, 80 and over
3.
Chempluschem ; : e202400192, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979961

ABSTRACT

A three-dimensional (3D) anionic cadmium-organic framework, namely [(CH3)2NH2][Cd1.5(DMTDC)2] ⋅ 2DMA ⋅ 0.5H2O (Cd-MOF; DMA=N,N-dimethylacetamide), was successfully synthesized under solvothermal conditions by using a linear thienothiophene-containing dicarboxylate ligand, 3,4-dimethylthieno [2,3-b]-thiophene-2,5-dicar-boxylic acid (H2DMTDC). Single-crystal X-ray diffraction analysis reveals that Cd-MOF exhibits a 3D anionic framework with pcu α-Po topology, featuring rectangle and rhombus-shaped channels along b- and c- axis direction. Cd-MOF demonstrates selective adsorption of cationic dyes over anionic and neutral dyes. Additionally, Tb3+-loaded Cd-MOF serves as a fast-response fluorescence sensor for the sensitive detection of Fe3+ ions with a low limit of detection (8.90×10-7 M) through fluorescence quenching.

4.
J Hazard Mater ; 476: 135166, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991635

ABSTRACT

Minimization of cadmium (Cd) accumulation in wheat grain (Triticum aestivum L.) is an important way to prevent Cd hazards to humans. However, little is known about the mechanisms of varietal variation of Cd accumulation in wheat grain. This study explores the physiological mechanisms of Cd bioaccumulation through field and hydroponic experiments on two wheat varieties of low-Cd-accumulating variety (L-6331) and high-Cd-accumulating variety (H-6049). Field study showed that average Cd accumulative rates in spikes of H-6049 were 1.57-fold of L-6331 after flowering, ultimately grain-Cd of H-6049 was 1.70-fold of L-6331 in Cd-contaminated farmland. The hydroponic experiment further confirmed that more vegetative tissues of L-6331 were involved in the remobilization of Cd, which jointly mitigated the process of Cd loaded to grains when leaf-cutting conducted after Cd stress. Additionally, the L1 and N1 of L-6331 play an especially important role in regulating Cd remobilization, and the larger EVB areas in N1 have the morphological feature that facilitates the transfer of Cd to L1. Overall results implied that low-Cd-accumulating variety initiated more trade-offs of reproductive growth and Cd remobilizatoin under Cd-stress after flowering compared with high-Cd-accumulating variety, and provided new insights into the processes of Cd loaded into wheat grains among different varieties.

5.
Sci Rep ; 14(1): 16044, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992223

ABSTRACT

With the high yield of many wells represented by Well JT1 in the Maokou Formation, has catalyzed a surge in exploration activities along the platform margin facies of the Maokou Formation in central Sichuan and further showed the significant exploration potential of the Maokou Formation in the northern slope. However, the fracture cave body of the Maokou Formation exhibits a high degree of development, strong longitudinal and horizontal heterogeneity, large formation pressure differences, and drilling events such as gas kicks and lost circulation occur frequently, which seriously affects the efficient implementation of drilling. Understanding the spatial distribution of the three-pressure in the formation can help better deal with and solve the above problems. Therefore, in order to help the safe, high-quality and rapid drilling of the Maokou Formation in the study area, and enhance the efficiency of oil and gas development, this paper explores the research on the prediction method of the three-pressure of jointing well-seismic data based on the geomechanical experimental data and the actual drilling data. In the process of prediction of pore pressure, this study found that the pore pressure and formation velocity in the study area have an exponential relationship. In order to enhance the applicability of the Filippone's method in the study area and improve the prediction accuracy of pore pressure, the linear relationship between pore pressure and formation velocity in the Filippone's method is modified to an exponential relationship, and a pore pressure prediction model suitable for the work area was established. Based on the Mohr-Coulomb criterion and Huang's model, the prediction models of collapse pressure and fracture pressure applicable to the study area were established, respectively. Then, the elastic parameters were obtained through pre-stack inversion, and the three-pressure bodies were calculated based on the elastic parameter bodies. The results indicate that: (1) The three-pressure prediction method of the jointing well-seismic data in this paper can predict the formation's longitudinal and transverse pressure anomaly zones in advance. (2) The Maokou Formation in the study area is characterized by abnormally high pressure, to balance the pressure of the high-ground formation, high-density drilling fluid is necessary. (3) The prediction results of three-pressure in this paper are highly consistent with the actual drilling engineering events, which verifies the reliability of the three-pressure prediction results presented in this study. The results of the study can provide a basis for decision-making in drilling geological design, such as the determination of drilling fluid density, the evaluation of borehole stability and other engineering problems that require support from three-pressure data.

6.
ACS Nano ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016265

ABSTRACT

Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.

7.
Bioorg Chem ; 151: 107618, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39003940

ABSTRACT

An unprecedented spiro-C-glycoside adduct, heteryunine A (1), along with two uncommon alkaloids featuring a 2,3-diketopiperazine skeleton, heterpyrazines A (2) and B (3), were discovered in the roots of Heterosmilax yunnanensis. The detailed spectroscopic analysis helped to clarify the planar structures of these compounds. Compound 1, containing 7 chiral centers, features a catechin fused with a spiroketal and connects with a tryptophan derivative by a CC bond. Its complex absolute configuration was elucidated by rotating frame overhauser enhancement spectroscopy (ROESY), specific rotation, and the 13C nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculation. The possible biosynthetic routes for 1 were deduced. Compounds 1 and 2 showed significant antifibrotic effects and further research revealed that they inhibited the activation, migration and proliferation of hepatic stellate cells (HSCs) through suppressing the activity of Ras homolog family member A (RhoA).

8.
Drug Des Devel Ther ; 18: 2227-2248, 2024.
Article in English | MEDLINE | ID: mdl-38882046

ABSTRACT

Purpose: The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods: First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results: BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion: BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.


Subject(s)
Anti-Anxiety Agents , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Metabolomics , Rats, Sprague-Dawley , Animals , Rats , Anti-Anxiety Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Restraint, Physical , Hippocampus/drug effects , Hippocampus/metabolism
9.
World J Clin Cases ; 12(16): 2765-2772, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38899311

ABSTRACT

BACKGROUND: Older spine surgery patients have a high incidence of debilitation, which can be managed with certain exercises. AIM: To investigate the current status and influencing factors related to the knowledge of exercise intervention among patients and professionals. METHODS: Descriptive research methods were used to classify and summarize patients and professionals' perceptions and factors affecting exercise interventions. Data were analysed using the Colaizzi seven-step analysis method to distill and refine themes. RESULTS: A total of 7 themes were identified: (1) The current status of patients' exercise is unsatisfactory; (2) patients' health literacy is low, coupled with a lack of social and family support; (3) there are numerous challenges with systematic exercise interventions; (4) healthcare professionals acknowledge the importance and need for exercise interventions; (5) there's a pronounced willingness among patients to participate in exercise intervention programs; (6) healthcare professionals believe that exercise interventions are beneficial; and (7) participants offered invaluable insights and suggestions on perioperative exercise during spinal surgery. CONCLUSION: To investigate the current status and influencing factors related to the knowledge of exercise intervention among patients and the related healthcare professionals to provide a reference for the construction of exercise management programs for these patients.

10.
Front Pharmacol ; 15: 1407335, 2024.
Article in English | MEDLINE | ID: mdl-38846099

ABSTRACT

Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.

11.
Water Res ; 260: 121904, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38878317

ABSTRACT

Anaerobic ammonium oxidation (anammox), an energy-efficient deamination biotechnology, faces operational challenges in low-temperature environments. Enhancing the metabolic activity of anammox bacteria (AnAOB) is pivotal for advancing its application in mainstream municipal wastewater treatment. Inspired by the metabolic adaptability of AnAOB and based on our previous findings, this work investigated the enhancement of intracellular ATP and NADH synthesis through the exogenous supply of reduced humic acid (HAred) and H2O2 redox couple, aiming to augment AnAOB activity under low-temperature conditions. Our experimental setup involved continuous dosing of 0.0067 µmol g-1 volatile suspended solid of H2O2 and 10 mg g-1 volatile suspended solid of HAred into a mainstream anammox reactor operated at 15 °C with an influent TN content of 60 mg/L. The results showed that HAred / H2O2 couple succeeded in maintaining the effluent TN at 10.72 ± 0.91 mg l-1. The specific anammox activity, ATP and NADH synthesis levels of sludge increased by 1.34, 2.33 and 6.50 folds, respectively, over the control setup devoid of the redox couple. High-throughput sequencing analysis revealed that the relative abundance of Candidatus Kuenenia after adding HAred / H2O2 couple reached 3.65 % at the end of operation, which was 5.14 folds higher than that of the control group. Further metabolomics analysis underscored an activation in the metabolism of amino acids, nucleotides, and phospholipids, which collectively enhanced the availability of ATP and NADH for the respiratory processes. These findings may provide guidance on strategy development for improving the electron transfer efficiency of AnAOB and underscore the potential of using redox couples to promote the mainstream application of anammox technology.

12.
J Hazard Mater ; 476: 135015, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38943886

ABSTRACT

The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW. The results indicate that GADP effectively inactivated Vibrio parahaemolyticus in ASW. As the volume of ASW increased, the time required for GADP sterilization also increased. However, the complete sterilization of 5000 mL of ASW containing Vibrio parahaemolyticus of approximately 1.0 × 104 CFU/mL was achieved within 20 min. Water quality tests of the GADP-treated ASW demonstrated that there were no significant changes in salinity or temperature when Vibrio parahaemolyticus (1.0 ×104 CFU/mL) was completely inactivated. In contrast to the acidification observed in plasma-activated water (PAW) in most studies, the pH of ASW did not decrease after treatment with GADP. The H2O2 concentration in the GADP-treated ASW decreased after post-treatment. The NO2-concentration in the GADP-treated ASW remained unchanged after post-treatment. Further analysis revealed that GADP induced oxidative stress in Vibrio parahaemolyticus, which increased cell membrane permeability and intracellular ROS levels of Vibrio parahaemolyticus. This study provides a viable solution for infection with the halophilic pathogen Vibrio parahaemolyticus and demonstrates the potential of GADP in mariculture.

13.
J Mol Endocrinol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38941267

ABSTRACT

Pregnancy requires metabolic adaptations in order to meet support fetal growth with nutrient availability. In this study, the influence of pregnancy on metabolically active organs (adipose tissues in particular) was investigated. Our results showed that maternal weight and adipose mass presented dynamic remodeling in the periparturient mice. Meanwhile, pregnancy mice displayed obvious glucose intolerance and insulin resistance in late pregnancy as compared to non-pregnancy, which were partially reversed at parturition. Further analysis revealed that different fat depots exhibited site-specific adaptions of morphology and functionality as pregnancy advanced. Brown and inguinal white adipose tissue (BAT and IngWAT) exhibited obviously decreased thermogenic activity; by contrast, gonadal white adipose tissue (GonWAT) displayed remarkably increased lipid mobilization. Notably, we found that mammary gland differentiation was enhanced in IngWAT, followed by BAT, but not in GonWAT. These result indicated that brown and white adipose tissues might synergistically play a crucial role in maintaining the maxicum of energy supply for mother and fetus, which facilitates the mammary duct luminal epithelium development as well as the growth and development of fetus. Accompanied with adipose adaptation, however, our results revealed that the liver and pancreas also displayed significant metabolic adaptability, which together tended to trigger the risk of maternal metabolic diseases. Importantly, pregnancy-dependent obesity in our mice model resembled the disturbed metabolic phenotypes of pregnant women such as hyperglyceridemia and hypercholesterolemia. Our findings in this study could provide valuable clues for better understanding the underlying mechanisms of metabolic maladaptation, and facilitate the development of the prevention and treatment of metabolic diseases.

14.
J Affect Disord ; 361: 10-16, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38844163

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is treated primarily using antidepressant drugs, but clinical effects may be delayed for weeks to months. This study investigated the efficacy of brief therapeutic sleep deprivation (TSD) for inducing rapid improvements in MDD symptoms. METHODS: From November 2020 to February 2023, 54 inpatients with MDD were randomly allocated to TSD and Control groups. The TSD group (23 cases) remained awake for 36 h, while the Control group (31 cases) maintained regular sleep patterns. All participants continued regular drug therapy. Mood was assessed using the 24-item Hamilton Depression Scale (HAMD-24) at baseline and post-intervention in both groups. In the TSD group, the Visual Analogue Scale (VAS) was utilized to evaluate subjective mood during and after the intervention. Cognitive function was assessed at baseline and post-intervention using the Montreal Cognitive Assessment (MoCA). Objective sleep parameters were recorded in the TSD group by polysomnography. The follow-up period spanned one week. RESULTS: HAMD-24 scores did not differ between groups at baseline or post-intervention. However, the clinical response rate was 34.8 % higher in the TSD group on day 3 post-intervention compared to the Control group (3.2 %), but not sustained by day 7. Moreover, responders demonstrated a faster improvement in the VAS score during TSD than non-responders (p = 0.047). There were no significant differences in MoCA scores or objective sleep parameters between the groups. LIMITATIONS: Small sample size and notable attrition rate. CONCLUSIONS: Therapeutic sleep deprivation can rapidly improve MDD symptoms without influencing sleep parameters or cognitive functions. Assessment of longer-term effects and identification of factors predictive of TSD response are warranted.


Subject(s)
Depressive Disorder, Major , Sleep Deprivation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/drug therapy , Female , Male , Sleep Deprivation/complications , Adult , Middle Aged , Treatment Outcome , Psychiatric Status Rating Scales , Polysomnography , Affect , Antidepressive Agents/therapeutic use
15.
Neurochem Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864944

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.

16.
Nat Chem Biol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720107

ABSTRACT

Whether stem-cell-like cancer cells avert ferroptosis to mediate therapy resistance remains unclear. In this study, using a soft fibrin gel culture system, we found that tumor-repopulating cells (TRCs) with stem-cell-like cancer cell characteristics resist chemotherapy and radiotherapy by decreasing ferroptosis sensitivity. Mechanistically, through quantitative mass spectrometry and lipidomic analysis, we determined that mitochondria metabolic kinase PCK2 phosphorylates and activates ACSL4 to drive ferroptosis-associated phospholipid remodeling. TRCs downregulate the PCK2 expression to confer themselves on a structural ferroptosis-resistant state. Notably, in addition to confirming the role of PCK2-pACSL4(T679) in multiple preclinical models, we discovered that higher PCK2 and pACSL4(T679) levels are correlated with better response to chemotherapy and radiotherapy as well as lower distant metastasis in nasopharyngeal carcinoma cohorts.

17.
J Agric Food Chem ; 72(20): 11452-11464, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38736181

ABSTRACT

In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 µM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypericum , Molecular Docking Simulation , Plant Extracts , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Hypericum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure , Ligands , Structure-Activity Relationship , Kinetics
18.
Regen Ther ; 26: 27-32, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798743

ABSTRACT

Objective: We aimed to examine whether heparin-binding epidermal growth factor-like growth factor (HB-EGF) affects the lung fibrosis process through the activation of p38 protein in mitogen-activated protein kinases (MAPK) signaling pathway, as well as the expression of downstream inflammatory factors. Methods: The expression levels of HB-EGF, collagen type I (COL-I), and hexokinase 2 (HK2) in peripheral blood mononuclear cells (PBMCs) of patients with connective tissue disease-related interstitial lung disease (CTD-ILD) were examined by qPCR, Western blotting and ELISA. Results: In vitro experiments showed that HB-EGF was increased in almost all subtypes [rheumatoid arthritis (RA), systemic sclerosis (SSc) and idiopathic inflammatory myopathies (IIMs)] as well as in all groups (P < 0.05). For embryonic lung fibroblast (A549) cells, the expression levels of HK2 and α-smooth muscle actin (α-SMA) genes were elevated during 0-4 h and then plateaued. Transforming growth factor-ß1 (TGF-ß1) induced fibrosis in human embryonic lung fibroblasts (MRC-5) cells and A549 for a certain period of time, but the degree of induction varied, which may be related to the redifferentiability of cells at different spatial locations. Moreover, HB-EGF at concentrations above 1 ng/ml stimulation increased COL-I expression (P < 0.05), and for α-SMA gene, even 1 ng/ml concentration of HB-EGF had a stimulatory effect, and different concentrations of HB-EGF did activate the expression of p38 in a concentration-dependent manner within a certain concentration range, and by The qPCR results showed that for interleukin 6 (IL-6), an inflammatory factor regulated downstream of p38, the expression was significantly increased in A549 cells compared to control (P < 0.05), but tumor necrosis factor-α (TNF-α) expression was downregulated (P < 0.05), but for interleukin-1ß (IL-1ß) gene, there was no significant difference in A549 cells, and expression was downregulated in MRC-5 cells. Therefore, it is suggested that HB-EGF regulates the expression of inflammatory factors through p38 will be differential across cells. Conclusion: Our study shows that HB-EGF can suppress pulmonary fibrosis through downstream activation of p38/MAPK pathway activity, as well as the expression of various inflammatory factors downstream of it.

19.
Seizure ; 119: 63-70, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796953

ABSTRACT

PURPOSE: Microstates represent the global and topographical distribution of electrical brain activity from scalp-recorded EEG. This study aims to explore EEG microstates of patients with focal epilepsy prior to medication, and employ extracted microstate metrics for predicting treatment outcomes with Oxcarbazepine monotherapy. METHODS: This study involved 25 newly-diagnosed focal epilepsy patients (13 females), aged 12 to 68, with various etiologies. Patients were categorized into Non-Seizure-Free (NSF) and Seizure-Free (SF) groups according to their first follow-up outcomes. From pre-medication EEGs, four representative microstates were identified by using clustering. The temporal parameters and transition probabilities of microstates were extracted and analyzed to discern group differences. With generating sample method, Support Vector Machine (SVM), Logistic Regression (LR), and Naïve Bayes (NB) classifiers were employed for predicting treatment outcomes. RESULTS: In the NSF group, Microstate 1 (MS1) exhibited a significantly higher duration (mean±std. = 0.092±0.008 vs. 0.085±0.008, p = 0.047), occurrence (mean±std. = 2.587±0.334 vs. 2.260±0.278, p = 0.014), and coverage (mean±std. = 0.240±0.046 vs. 0.194±0.040, p = 0.014) compared to the SF group. Additionally, the transition probabilities from Microstate 2 (MS2) and Microstate 3 (MS3) to MS1 were increased. In MS2, the NSF group displayed a stronger correlation (mean±std. = 0.618±0.025 vs. 0.571±0.034, p < 0.001) and a higher global explained variance (mean±std. = 0.083±0.035 vs. 0.055±0.023, p = 0.027) than the SF group. Conversely, Microstate 4 (MS4) in the SF group demonstrated significantly greater coverage (mean±std. = 0.388±0.074 vs. 0.334±0.052, p = 0.046) and more frequent transitions from MS2 to MS4, indicating a distinct pattern. Temporal parameters contribute major predictive role in predicting treatment outcomes of Oxcarbazepine, with area under curves (AUCs) of 0.95, 0.70, and 0.86, achieved by LR, NB and SVM, respectively. CONCLUSION: This study underscores the potential of EEG microstates as predictive biomarkers for Oxcarbazepine treatment responses in newly-diagnosed focal epilepsy patients.


Subject(s)
Anticonvulsants , Electroencephalography , Epilepsies, Partial , Oxcarbazepine , Humans , Epilepsies, Partial/drug therapy , Epilepsies, Partial/physiopathology , Epilepsies, Partial/diagnosis , Female , Oxcarbazepine/therapeutic use , Oxcarbazepine/pharmacology , Male , Electroencephalography/methods , Anticonvulsants/therapeutic use , Adult , Middle Aged , Adolescent , Child , Young Adult , Treatment Outcome , Aged , Support Vector Machine , Carbamazepine/analogs & derivatives , Carbamazepine/therapeutic use , Bayes Theorem
20.
J Food Sci ; 89(7): 4032-4046, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778552

ABSTRACT

In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.


Subject(s)
Antioxidants , Chitosan , Collagen , Eugenol , Fishes , Skin , Tensile Strength , Eugenol/pharmacology , Eugenol/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Animals , Collagen/chemistry , Collagen/pharmacology , Skin/drug effects , Skin/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Food Packaging/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...