Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 76(7): 2637-42, 2004.
Article in English | MEDLINE | ID: mdl-16042111

ABSTRACT

The aim of this study is to highlight the possibility of using powder magnetite adsorption-Fenton oxidation as a method for removal of azo dye acid red B (ARB) from water. The adsorption properties of magnetite powder towards ARB were studied. The oxidation of adsorbed ARB and regeneration of magnetite adsorbent at the same time by Fenton reagent (hydrogen peroxide [H2O2] + iron (II) [Fe2+]) in another treatment unit with a smaller volume was also investigated. The efficiency of Fenton oxidation of ARB was compared for the reaction carried out in solution and on magnetite. The magnetic separation method was used to recover magnetite after adsorption or regeneration. The results indicated that the adsorption rate was fast. The capacity was strongly dependent on pH and inorganic anions, and pH 3.8 was optimal for the adsorption of ARB. The adsorption can be described well using the Langmuir model. The oxidation was more efficient for ARB adsorbed on magnetite than in solution. The adsorption capacity of magnetite increased significantly after regeneration, which was the result of an increase in surface area of the adsorbent and change of elemental ratio (oxygen:iron [O:Fe]) on the surface. The maximum adsorption capacity for ARB was 32.4 mg/g adsorbent.


Subject(s)
Azo Compounds/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxides/chemistry , Rhodamines/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Adsorption , Ferrosoferric Oxide , Hydrogen-Ion Concentration , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...