Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 3(10): 2844-2854, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37885574

ABSTRACT

Controlling the size of single-digit pores, such as those in graphene, with an Å resolution has been challenging due to the limited understanding of pore evolution at the atomic scale. The controlled oxidation of graphene has led to Å-scale pores; however, obtaining a fine control over pore evolution from the pore precursor (i.e., the oxygen cluster) is very attractive. Herein, we introduce a novel "control knob" for gasifying clusters to form pores. We show that the cluster evolves into a core/shell structure composed of an epoxy group surrounding an ether core in a bid to reduce the lattice strain at the cluster core. We then selectively gasified the strained core by exposing it to 3.2 eV of light at room temperature. This allowed for pore formation with improved control compared to thermal gasification. This is because, for the latter, cluster-cluster coalescence via thermally promoted epoxy diffusion cannot be ruled out. Using the oxidation temperature as a control knob, we were able to systematically increase the pore density while maintaining a narrow size distribution. This allowed us to increase H2 permeance as well as H2 selectivity. We further show that these pores could differentiate CH4 from N2, which is considered to be a challenging separation. Dedicated molecular dynamics simulations and potential of mean force calculations revealed that the free energy barrier for CH4 translocation through the pores was lower than that for N2. Overall, this study will inspire research on the controlled manipulation of clusters for improved precision in incorporating Å-scale pores in graphene.

2.
Langmuir ; 39(25): 8787-8800, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37312291

ABSTRACT

With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10-30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee, W.-C., et al., ACS Nano 2022, 16(9), 15382). Herein, using molecular dynamics simulations, we examine the suitability of Å-scale graphene nanopores in enhancing water evaporation from salt solutions (LiCl, NaCl, and KCl). Cation-π interactions between ions and the surface of nanoporous graphene are found to significantly influence ion populations in the nanopore vicinity, leading to varied water evaporation fluxes from different salt solutions. The highest water evaporation flux was observed for KCl solutions, followed by NaCl and LiCl solutions, with the differences reducing at lower concentrations. Relative to the bare liquid-vapor interface, 4.54 Å nanopores exhibit the highest evaporation flux enhancements ranging from 7 to 11, with an enhancement of 10.8 obtained for 0.6 M NaCl solution, which closely resembles seawater compositions. Functionalized nanopores induce short-lived water-water hydrogen bonds and reduce surface tension at the liquid-vapor interface, thereby lowering the free energy barrier for water evaporation with a negligible effect on the ion hydration dynamics. These findings can aid in developing green technologies for desalination and separation processes with low thermal energy input.

3.
ACS Nano ; 16(9): 15382-15396, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36000823

ABSTRACT

Enhancing the kinetics of liquid-vapor transition from nanoscale confinements is an attractive strategy for developing evaporation and separation applications. The ultimate limit of confinement for evaporation is an atom thick interface hosting angstrom-scale nanopores. Herein, using a combined experimental/computational approach, we report highly enhanced water evaporation rates when angstrom sized oxygen-functionalized graphene nanopores are placed at the liquid-vapor interface. The evaporation flux increases for the smaller nanopores with an enhancement up to 35-fold with respect to the bare liquid-vapor interface. Molecular dynamics simulations reveal that oxygen-functionalized nanopores render rapid rotational and translational dynamics to the water molecules due to a reduced and short-lived water-water hydrogen bonding. The potential of mean force (PMF) reveals that the free energy barrier for water evaporation decreases in the presence of nanopores at the atomically thin interface, which further explains the enhancement in evaporation flux. These findings can enable the development of energy-efficient technologies relying on water evaporation.

4.
J Phys Chem B ; 123(5): 1186-1194, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30640463

ABSTRACT

The effect of salt on the static properties of aqueous solution of gelatin is studied by molecular dynamics simulation at pH = 1.2, 7, and 10. At the isoelectric point (pH = 7), a monotonic increase in size of the polymer is obtained with the addition of sodium chloride ions. In the positive polyelectrolyte regime (pH = 1.2), collapse of gelatin is observed with increase in salt concentration. In the negative polyelectrolyte regime, we observe an interesting collapse-reexpansion behavior. This is due to the screening of repulsion between the excess charges followed by the screening of attraction of oppositely charged ions as the salt concentration is increased. This mechanism is very different from the charge inversion mechanism which causes the reexpansion in the presence of multivalent ions. The location of salt concentration corresponding to the minimum size of the chain is comparable to the theoretical estimate. The shift in the peak of radial distribution function calculated between monomers and salt ions confirms this spatial reorganization. The predictions from the simulation are verified by dynamic light scattering(DLS) and small-angle X-ray scattering (SAXS) experiments. The size of the hydrodynamic "clusters" obtained from DLS confirms the simulation predictions. Persistence length of the gelatin is calculated from SAXS to get single chain statistics, which also agrees well with the simulation results.

5.
ACS Appl Bio Mater ; 1(5): 1244-1253, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-34996228

ABSTRACT

Gelatin has been the biomaterial of choice for decades now. Its low cost, renewable, nontoxic, and biodegradable properties make it one of the most desirable materials for controlled release applications. However, the usage of gelatin is limited by its poor mechanical/thermal stability and high water solubility. Chemical cross-linkers and hydrophobic modifications of gelatin have solved this problem, but they lead to the problem of toxicity and/or a high processing cost. This research attempts to employ a nontoxic hydrophobic drug molecule to curb early degradation of gelatin in an aqueous environment. We report the design of non-cross-linked gelatin capsules with a high dissolution resistance in an aqueous medium. Piperine, a hydrophobic drug (solubility = 40 mg/L in water), was coated on the gelatin capsules to enhance its stability in an aqueous environment. The hydrophobic piperine molecules repelled the water molecules to intensify its dissolution resistance. This stabilization was used to control the release of naproxen sodium, encapsulated inside the gelatin matrix. Piperine, in this case, acts as a placebo; i.e., it has zero therapeutic effect, but its presence was necessary to control the early degradation of the gelatin matrix. The deposition of piperine was done using the solvent evaporation method where ethanol was used as the solvent. The wettability studies revealed the hydrophobic nature of the surface after the deposition of piperine, while SEM analysis showed the presence of long cylindrical (fiber-like) structures over the gelatin surface. Further investigation (FTIR/ATR and molecular dynamics) revealed that the long fiber structures were due to the crystallization of piperine over the surface of gelatin. This crystallization was triggered by the intermolecular association (hydrogen bond) of ethanol and piperine. These observations enabled us to optimize the piperine loading protocol over the gelatin capsules that helped in achieving a zero-order naproxen release for 32 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...