Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Clin Exp Immunol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642547

ABSTRACT

Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.

2.
Clin Infect Dis ; 76(2): 201-209, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36196614

ABSTRACT

BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).


Subject(s)
COVID-19 , HIV Infections , Adult , Humans , HIV , ChAdOx1 nCoV-19 , BNT162 Vaccine , SARS-CoV-2 , COVID-19/prevention & control , Lymphocyte Activation , Vaccination , HIV Infections/drug therapy , Immunoglobulin G , Antibodies, Viral
3.
Wellcome Open Res ; 8: 188, 2023.
Article in English | MEDLINE | ID: mdl-38903244

ABSTRACT

Background: Interferon-γ (IFN-γ) secretion by T cells is a key correlate of immune protection against many pathogens including tuberculosis and the neglected tropical disease melioidosis. Clinical studies in tropical regions of immune responses to pathogens and vaccine monitoring studies require the collection of samples in resource-limited rural areas and subsequent shipment to central laboratories for downstream assays and long-term storage. Here, we studied the impact of two different shipping temperatures on the viability, composition and function of peripheral blood mononuclear cells (PBMC) using multi-colour flow cytometry and IFN-γ enzyme-linked immunospot assay (IFN-γ ELISpot), in order to provide guidance on sample shipment conditions for future clinical studies. Methods: Paired peripheral blood mononuclear cell (PBMC) samples from recovered melioidosis patients were stored in liquid nitrogen (-196°C) and then shipped from Bangkok, Thailand to Oxford, UK at either -80°C (dry ice) or -196°C (dry shipper). After thawing, cell viability and composition were assessed by flow cytometry and antigen specific responses to Burkholderia pseudomallei (BP) were measured using IFN-γ ELISpot. Results: We observed modest lowering of viability in the majority of samples and a reduction in IFN-γ responses to BP which correlated to a decrease of monocytes and natural killer cells in samples shipped at -80°C compared to -196°C. Despite being lower in magnitude antigen-specific responses remained detectable in the majority of samples. Conclusions: Here we demonstrate that shipment of cryopreserved PBMC at -196°C has a benefit on cell viability, recovery and T cell responses to bacterial antigens, although useful information can still be obtained from samples shipped at -80°C, thus providing important guidance for sample management in future clinical trials.

4.
Nat Commun ; 13(1): 1251, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273178

ABSTRACT

The trajectories of acquired immunity to severe acute respiratory syndrome coronavirus 2 infection are not fully understood. We present a detailed longitudinal cohort study of UK healthcare workers prior to vaccination, presenting April-June 2020 with asymptomatic or symptomatic infection. Here we show a highly variable range of responses, some of which (T cell interferon-gamma ELISpot, N-specific antibody) wane over time, while others (spike-specific antibody, B cell memory ELISpot) are stable. We use integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling OverNight) to explore this heterogeneity. We identify a subgroup of participants with higher antibody responses and interferon-gamma ELISpot T cell responses, and a robust trajectory for longer term immunity associates with higher levels of neutralising antibodies against the infecting (Victoria) strain and also against variants B.1.1.7 (alpha) and B.1.351 (beta). These variable trajectories following early priming may define subsequent protection from severe disease from novel variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antiviral Agents , Humans , Longitudinal Studies , Spike Glycoprotein, Coronavirus
5.
Lancet Microbe ; 3(1): e21-e31, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34778853

ABSTRACT

BACKGROUND: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer-BioNTech) mRNA vaccine. METHODS: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3-4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. FINDINGS: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232-285). At 28 days (IQR 27-33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150-461] vs 55 [IQR 24-132] spot-forming units [SFUs] per 106 PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119-275] vs 162 [104-258] SFUs/106 PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270 373 [IQR 203 461-535 188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35 001 [17 099-55 341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180 904 [108 221-242 467] AU/mL; p<0·0001). INTERPRETATION: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. FUNDING: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Prospective Studies , T-Lymphocytes , United Kingdom/epidemiology , Vaccines, Synthetic , mRNA Vaccines
6.
Front Immunol ; 12: 767359, 2021.
Article in English | MEDLINE | ID: mdl-34966388

ABSTRACT

Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Burkholderia pseudomallei/immunology , Melioidosis/immunology , T-Lymphocytes/immunology , Animals , Bacterial Vaccines/administration & dosage , Burkholderia pseudomallei/metabolism , Burkholderia pseudomallei/physiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/microbiology , Cells, Cultured , Diabetes Mellitus, Type 2/immunology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/microbiology , Male , Melioidosis/microbiology , Melioidosis/prevention & control , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocytes/metabolism , T-Lymphocytes/microbiology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/microbiology
7.
Lancet HIV ; 8(8): e474-e485, 2021 08.
Article in English | MEDLINE | ID: mdl-34153264

ABSTRACT

BACKGROUND: Data on vaccine immunogenicity against SARS-CoV-2 are needed for the 40 million people globally living with HIV who might have less functional immunity and more associated comorbidities than the general population. We aimed to explore safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV. METHODS: In this single-arm open-label vaccination substudy within the protocol of the larger phase 2/3 trial COV002, adults aged 18-55 years with HIV were enrolled at two HIV clinics in London, UK. Eligible participants were required to be on antiretroviral therapy (ART), with undetectable plasma HIV viral loads (<50 copies per mL), and CD4 counts of more than 350 cells per µL. A prime-boost regimen of ChAdOx1 nCoV-19, with two doses was given 4-6 weeks apart. The primary outcomes for this substudy were safety and reactogenicity of the vaccine, as determined by serious adverse events and solicited local and systemic reactions. Humoral responses were measured by anti-spike IgG ELISA and antibody-mediated live virus neutralisation. Cell-mediated immune responses were measured by ex-vivo IFN-γ enzyme-linked immunospot assay (ELISpot) and T-cell proliferation. All outcomes were compared with an HIV-uninfected group from the main COV002 study within the same age group and dosing strategy and are reported until day 56 after prime vaccination. Outcomes were analysed in all participants who received both doses and with available samples. The COV002 study is registered with ClinicalTrials.gov, NCT04400838, and is ongoing. FINDINGS: Between Nov 5 and Nov 24, 2020, 54 participants with HIV (all male, median age 42·5 years [IQR 37·2-49·8]) were enrolled and received two doses of ChAdOx1 nCoV-19. Median CD4 count at enrolment was 694·0 cells per µL (IQR 573·5-859·5). No serious adverse events occurred. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (26 [49%] of 53 participants with available data), fatigue (25 [47%]), headache (25 [47%]), malaise (18 [34%]), chills (12 [23%]), muscle ache (19 [36%]), joint pain (five [9%]), and nausea (four [8%]), the frequencies of which were similar to the HIV-negative participants. Anti-spike IgG responses by ELISA peaked at day 42 (median 1440 ELISA units [EUs; IQR 704-2728]; n=50) and were sustained until day 56 (median 941 EUs [531-1445]; n=49). We found no correlation between the magnitude of the anti-spike IgG response at day 56 and CD4 cell count (p=0·93) or age (p=0·48). ELISpot and T-cell proliferative responses peaked at day 14 and 28 after prime dose and were sustained to day 56. Compared with participants without HIV, we found no difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (p>0·05 for all analyses). INTERPRETATION: In this study of people with HIV, ChAdOx1 nCoV-19 was safe and immunogenic, supporting vaccination for those well controlled on ART. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , HIV Infections/immunology , SARS-CoV-2/immunology , Adult , CD4 Lymphocyte Count , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , HIV Infections/drug therapy , Humans , Male , Middle Aged , Vaccination
8.
Nat Commun ; 12(1): 2055, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824342

ABSTRACT

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunoassay/methods , SARS-CoV-2/physiology , T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Proliferation , Cytokines/metabolism , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/metabolism , Pandemics , Peptides/metabolism , SARS-CoV-2/drug effects
9.
Emerg Infect Dis ; 27(2): 463-470, 2021 02.
Article in English | MEDLINE | ID: mdl-33496230

ABSTRACT

Melioidosis is a life-threatening infectious disease caused by the gram-negative bacillus Burkholderia pseudomallei. An effective vaccine is needed, but data on protective immune responses in human melioidosis are lacking. We used ELISA and an antibody-dependent cellular phagocytosis assay to identify the major features of protective antibodies in patients with acute melioidosis in Thailand. We found that high levels of B. pseudomallei-specific IgG2 are associated with protection against death in a multivariable logistic regression analysis adjusting for age, diabetes, renal disease, and neutrophil count. Serum from melioidosis survivors enhanced bacteria uptake into human monocytes expressing FcγRIIa-H/R131, an intermediate-affinity IgG2-receptor, compared with serum from nonsurvivors. We did not find this enhancement when using monocytes carrying the low IgG2-affinity FcγRIIa-R131 allele. The findings indicate the importance of IgG2 in protection against death in human melioidosis, a crucial finding for antibody-based therapeutics and vaccine development.


Subject(s)
Antibodies, Bacterial/immunology , Burkholderia pseudomallei , Immunoglobulin G/immunology , Melioidosis , Adult , Enzyme-Linked Immunosorbent Assay , Humans , Melioidosis/epidemiology , Melioidosis/immunology , Thailand
10.
Article in English | MEDLINE | ID: mdl-32984070

ABSTRACT

Melioidosis is a neglected tropical disease with high mortality rate. It is caused by the Gram-negative, CDC category B select agent Burkholderia pseudomallei (B. ps) that is intrinsically resistant to first-line antibiotics. An antibody-based vaccine is likely to be the most effective control measure. Previous studies have demonstrated significant mechanistic roles of antibodies in protection against death in animal models, but data from human melioidosis is scarce. Herein, we used in-vitro antibody-dependent cellular phagocytosis and growth inhibition assays to assess the mechanism of protective antibodies in patients with acute melioidosis. We found that serum from patients who survived the disease enable more live B. ps to be engulfed by THP-1 derived macrophages (median 1.7 × 103 CFU/ml, IQR 1.1 × 103-2.5 × 103 CFU/ml) than serum from patients who did not survive (median 1.2 × 103 CFU/ml, IQR 0.7 × 103-1.8 × 103, p = 0.02). In addition, the intracellular growth rate of B. ps pre-opsonized with serum from survivors (median 7.89, IQR 5.58-10.85) was diminished when compared with those with serum from non-survivors (median 10.88, IQR 5.42-14.88, p = 0.04). However, the difference of intracellular bacterial growth rate failed to reach statistical significance when using purified IgG antibodies (p = 0.09). These results provide new insights into a mechanistic role of serum in protection against death in human melioidosis for antibody-based vaccine development.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Animals , Antibodies, Bacterial , Bacterial Vaccines , Humans , Macrophages , Research Report , Survivors
11.
Emerg Infect Dis ; 26(3): 463-471, 2020 03.
Article in English | MEDLINE | ID: mdl-32091359

ABSTRACT

Melioidosis is a neglected tropical disease with an estimated annual mortality rate of 89,000 in 45 countries across tropical regions. The causative agent is Burkholderia pseudomallei, a gram-negative soil-dwelling bacterium. In Thailand, B. pseudomallei can be found across multiple regions, along with the low-virulence B. thailandensis and the recently discovered B. thailandensis variant (BTCV), which expresses B. pseudomallei-like capsular polysaccharide. Comprehensive studies of human immune responses to B. thailandensis variants and cross-reactivity to B. pseudomallei are not complete. We evaluated human immune responses to B. pseudomallei, B. thailandensis, and BTCV in melioidosis patients and healthy persons in B. pseudomallei-endemic areas using a range of humoral and cellular immune assays. We found immune cross-reactivity to be strong for both humoral and cellular immunity among B. pseudomallei, B. thailandensis, and BTCV. Our findings suggest that environmental exposure to low-virulence strains may build cellular immunity to B. pseudomallei.


Subject(s)
Burkholderia/immunology , Melioidosis/epidemiology , Adult , Aged , Aged, 80 and over , Burkholderia/pathogenicity , Cohort Studies , Cross Reactions , Female , Humans , Immunity , Male , Melioidosis/microbiology , Middle Aged , Prospective Studies , Thailand/epidemiology , Virulence , Young Adult
12.
Am J Trop Med Hyg ; 99(6): 1378-1385, 2018 12.
Article in English | MEDLINE | ID: mdl-30298810

ABSTRACT

Melioidosis is a major neglected tropical disease with high mortality, caused by the Gram-negative bacterium Burkholderia pseudomallei (Bp). Microbiological culture remains the gold standard for diagnosis, but a simpler and more readily available test such as an antibody assay is highly desirable. In this study, we conducted a serological survey of blood donors (n = 1,060) and adult melioidosis patients (n = 200) in northeast Thailand to measure the antibody response to Bp using the indirect hemagglutination assay (IHA). We found that 38% of healthy adults (aged 17-59 years) have seropositivity (IHA titer ≥ 1:80). The seropositivity in healthy blood donors was associated with having a declared occupation of rice farmer and with residence in a nonurban area, but not with gender or age. In the melioidosis cohort, the seropositivity rate was higher in adult patients aged between 18 and 45 years (90%, 37/41) compared with those aged ≥ 45 years (68%, 108/159, P = 0.004). The seropositivity rate was significantly higher in people with diabetes (P = 0.008). Seropositivity was associated with decreased mortality on univariable analysis (P = 0.005), but not on multivariable analysis when adjusted for age, diabetes status, preexisting renal disease, and neutrophil count. This study confirms the presence of high background antibodies in an endemic region and demonstrates the limitations of using IHA during acute melioidosis in this population.


Subject(s)
Antibodies, Bacterial/blood , Burkholderia pseudomallei/immunology , Diabetes Complications/immunology , Hemagglutination Tests/methods , Melioidosis/immunology , Neglected Diseases/immunology , Adolescent , Adult , Agriculture , Burkholderia pseudomallei/isolation & purification , Burkholderia pseudomallei/pathogenicity , Cohort Studies , Diabetes Complications/diagnosis , Diabetes Complications/microbiology , Diabetes Complications/mortality , Female , Humans , Male , Melioidosis/diagnosis , Melioidosis/microbiology , Melioidosis/mortality , Middle Aged , Neglected Diseases/diagnosis , Neglected Diseases/microbiology , Neglected Diseases/mortality , Neutrophils/immunology , Neutrophils/pathology , Rural Population , Survival Analysis , Thailand/epidemiology
13.
PLoS Negl Trop Dis ; 12(1): e0006193, 2018 01.
Article in English | MEDLINE | ID: mdl-29364892

ABSTRACT

BACKGROUND: Burkholderia pseudomallei is an environmental Gram-negative bacillus and the cause of melioidosis. B. thailandensis, some strains of which express a B. pseudomallei-like capsular polysaccharide (BTCV), is also commonly found in the environment in Southeast Asia but is considered non-pathogenic. The aim of the study was to determine the distribution of B. thailandensis and its capsular variant in Thailand and investigate whether its presence is associated with a serological response to B. pseudomallei. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the presence of B. pseudomallei and B. thailandensis in 61 rice fields in Northeast (n = 21), East (n = 19) and Central (n = 21) Thailand. We found BTCV in rice fields in East and Central but not Northeast Thailand. Fourteen fields were culture positive for B. pseudomallei alone, 8 for B. thailandensis alone, 11 for both B. pseudomallei and B. thailandensis, 6 for both B. thailandensis and BTCV, and 5 for B. pseudomallei, B. thailandensis and BTCV. Serological testing using the indirect hemagglutination assay (IHA) of 96 farmers who worked in the study fields demonstrated that farmers who worked in B. pseudomallei-positive fields had higher IHA titers than those who worked in B. pseudomallei-negative fields (median 1:40 [range: <1:10-1:640] vs. <1:10 [range: <1:10-1:320], p = 0.002). In a multivariable ordered logistic regression model, IHA titers were significantly associated with the presence of B. pseudomallei (aOR = 3.7; 95% CI 1.8-7.8, p = 0.001) but were not associated with presence of B. thailandensis (p = 0.32) or BTCV (p = 0.32). One sequence type (696) was identified for the 27 BTCV isolates tested. CONCLUSIONS/SIGNIFICANCE: This is the first report of BTCV in Thailand. The presence of B. pseudomallei and B. thailandensis in the same field was not uncommon. Our findings suggest that IHA positivity of healthy rice farmers in Thailand is associated with the presence of B. pseudomallei in rice fields rather than B. thailandensis or BTCV.


Subject(s)
Antibodies, Bacterial/blood , Bacterial Capsules/immunology , Burkholderia Infections/immunology , Burkholderia Infections/microbiology , Burkholderia pseudomallei/immunology , Environmental Microbiology , Adult , Aged , Female , Hemagglutination Tests , Humans , Male , Middle Aged , Occupational Exposure , Thailand , Young Adult
14.
PLoS Negl Trop Dis ; 10(12): e0005204, 2016 12.
Article in English | MEDLINE | ID: mdl-27973567

ABSTRACT

BACKGROUND: Culture is the gold standard for the detection of environmental B. pseudomallei. In general, soil specimens are cultured in enrichment broth for 2 days, and then the culture broth is streaked on an agar plate and incubated further for 7 days. However, identifying B. pseudomallei on the agar plates among other soil microbes requires expertise and experience. Here, we evaluate a lateral flow immunoassay (LFI) developed to detect B. pseudomallei capsular polysaccharide (CPS) in clinical samples as a tool to detect B. pseudomallei in environmental samples. METHODOLOGY/PRINCIPAL FINDINGS: First, we determined the limit of detection (LOD) of LFI for enrichment broth of the soil specimens. Soil specimens (10 grams/specimen) culture negative for B. pseudomallei were spiked with B. pseudomallei ranging from 10 to 105 CFU, and incubated in 10 ml of enrichment broth in air at 40°C. Then, on day 2, 4 and 7 of incubation, 50 µL of the upper layer of the broth were tested on the LFI, and colony counts to determine quantity of B. pseudomallei in the broth were performed. We found that all five soil specimens inoculated at 10 CFU were negative by LFI on day 2, but four of those five specimens were LFI positive on day 7. The LOD of the LFI was estimated to be roughly 3.8x106 CFU/ml, and culture broth on day 7 was selected as the optimal sample for LFI testing. Second, we evaluated the utility of the LFI by testing 105 soil samples from Northeast Thailand. All samples were also tested by standard culture and quantitative PCR (qPCR) targeting orf2. Of 105 soil samples, 35 (33%) were LFI positive, 25 (24%) were culture positive for B. pseudomallei, and 79 (75%) were qPCR positive. Of 11 LFI positive but standard culture negative specimens, six were confirmed by having the enrichment broth on day 7 culture positive for B. pseudomallei, and an additional three by qPCR. The LFI had 97% (30/31) sensitivity to detect soil specimens culture positive for B. pseudomallei. CONCLUSIONS/SIGNIFICANCE: The LFI can be used to detect B. pseudomallei in soil samples, and to select which samples should be sent to reference laboratories or proceed further for bacterial isolation and confirmation. This could considerably decrease laboratory workload and assist the development of a risk map for melioidosis in resource-limited settings.


Subject(s)
Burkholderia pseudomallei/isolation & purification , Immunoassay/methods , Soil Microbiology , Burkholderia pseudomallei/chemistry , Burkholderia pseudomallei/immunology , Humans , Immunoassay/standards , Limit of Detection , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/isolation & purification , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Thailand
15.
Appl Environ Microbiol ; 82(24): 7086-7092, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27694236

ABSTRACT

Burkholderia pseudomallei is a soil-dwelling bacterium and the cause of melioidosis, which kills an estimated 89,000 people per year worldwide. Agricultural workers are at high risk of infection due to repeated exposure to the bacterium. Little is known about the soil physicochemical properties associated with the presence or absence of the organism. Here, we evaluated the soil physicochemical properties and presence of B. pseudomallei in 6,100 soil samples collected from 61 rice fields in Thailand. The presence of B. pseudomallei was negatively associated with the proportion of clay, proportion of moisture, level of salinity, percentage of organic matter, presence of cadmium, and nutrient levels (phosphorus, potassium, calcium, magnesium, and iron). The presence of B. pseudomallei was not associated with the level of soil acidity (P = 0.54). In a multivariable logistic regression model, the presence of B. pseudomallei was negatively associated with the percentage of organic matter (odds ratio [OR], 0.06; 95% confidence interval [CI], 0.01 to 0.47; P = 0.007), level of salinity (OR, 0.06; 95% CI, 0.01 to 0.74; P = 0.03), and percentage of soil moisture (OR, 0.81; 95% CI, 0.66 to 1.00; P = 0.05). Our study suggests that B. pseudomallei thrives in rice fields that are nutrient depleted. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount of B. pseudomallei bacteria in affected areas. IMPORTANCE: Burkholderia pseudomallei is an environmental Gram-negative bacillus and the cause of melioidosis. Humans acquire the disease following skin inoculation, inhalation, or ingestion of the bacterium in the environment. The presence of B. pseudomallei in soil defines geographic regions where humans and livestock are at risk of melioidosis, yet little is known about the soil properties associated with the presence of the organism. We evaluated the soil properties and presence of B. pseudomallei in 61 rice fields in East, Central, and Northeast Thailand. We demonstrated that the organism was more commonly found in soils with lower levels of organic matter and nutrients, including phosphorus, potassium, calcium, magnesium, and iron. We also demonstrated that crop residue burning after harvest, which can reduce soil nutrients, was not uncommon. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount of B. pseudomallei bacteria in affected areas.


Subject(s)
Burkholderia pseudomallei/isolation & purification , Soil Microbiology , Soil/chemistry , Burkholderia pseudomallei/classification , Burkholderia pseudomallei/genetics , Environment , Oryza/growth & development , Salinity , Thailand
16.
Emerg Infect Dis ; 20(2): 265-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24447771

ABSTRACT

We identified 10 patients in Thailand with culture-confirmed melioidosis who had Burkholderia pseudomallei isolated from their drinking water. The multilocus sequence type of B. pseudomallei from clinical specimens and water samples were identical for 2 patients. This finding suggests that drinking water is a preventable source of B. pseudomallei infection.


Subject(s)
Burkholderia pseudomallei/genetics , DNA, Bacterial/classification , Drinking Water/microbiology , Melioidosis/epidemiology , Aged , Aged, 80 and over , Burkholderia pseudomallei/classification , Burkholderia pseudomallei/isolation & purification , DNA, Bacterial/genetics , Female , Humans , Male , Melioidosis/diagnosis , Melioidosis/microbiology , Multilocus Sequence Typing , Seasons , Thailand/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...